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Abstract— Imaging ballistocardiography (iBCG) is a video-
based noncontact technique to detect heart rate (HR) from weak
mechanical head movements caused by heart beating. However,
rigid motions caused by voluntary movements and nonrigid
motion resulted from facial expressions can easily distort the
iBCG measurements. In this article, we propose a novel method,
called robust iBCG (RiBCG), to suppress motion artifacts in
iBCG with a two-step canonical correlation analysis (CCA). First,
feature points are determined and tracked within two regions of
interest (ROIs) from the face, where the vertical traces are taken
as raw iBCG signals. Next, the first CCA is taken to separately
remove the shared rigid motion artifacts between the horizontal
and vertical traces in each ROI, where the obtained rigid-
motion-free iBCG signals are further compressed by principal
component analysis (PCA). Then, CCA is applied again to two
sets of principal components to suppress nonrigid motion artifacts
with low spatial correlations. Finally, the target HR value is
determined as the one with the highest peak of power spectrums
among all canonical variates (CVs). Besides, an improved ver-
sion of RiBCG, termed RiBCG-C, is also proposed to reduce
the HR outliers considering the continuity of HR variations.
The proposed methods, as well as several other typical video-
based HR measurement methods, are evaluated on two public
databases, UBFC-RPPG and COHFACE, where the proposed
RiBCG-C method achieves overall the best performance. The
study provides a promising scheme for RiBCG measurements
under realistic application scenarios.

Index Terms— Canonical correlation analysis (CCA), heart
rate (HR) estimation, imaging ballistocardiography (iBCG),
motion artifact removal.

I. INTRODUCTION

V IDEO-BASED heart rate (HR) measurement techniques
attract extensive attention in recent years. Currently,
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there are two typical ways of measuring HR from facial
videos including remote photoplethysmography (rPPG) [1],
[2] and imaging ballistocardiography (iBCG) [3]. The rPPG
measures HR using periodic facial color changes caused by
blood volume variations, while the iBCG measures HR with
rhythmic head motions due to cyclical movements of blood.
The accuracy and stability of video-based HR measurements
are mainly disrupted by ambient light changes and motion
artifacts.

For rPPG, researchers have done excellent works to elimi-
nate interferences of illumination variations and motion arti-
facts [1]. In terms of against ambient light changes, there
are generally two types of schemes in rPPG. One scheme
directly separates the pulse signal from ambient light changes
using blind source separation (BSS) techniques [4] or other
signal decomposition methods [5]. The other scheme takes the
background region as the noise reference [6]. As for motion
artifact elimination, there are also several types of methods.
Since the motion is usually assumed to be linearly mixed with
the target pulse signal, the BSS-based methods can be used
to decouple the related sources. For example, Poh et al. [7]
took independent component analysis (ICA) to obtain the pulse
signal from RGB signals. Another way is to explicitly remove
motion artifacts based on the optical reflection model [8]. For
instance, de Haan and Jeanne [9] proposed a chrominance-
based method (CHROM) to measure HR. Wang et al. [8]
introduced the “plane-orthogonal-to-skin” (POS) method using
a different projection from CHROM to remove the motion-
induced noise.

Recently, inspired by the success of deep learning in
computer vision areas, many learning-based rPPG methods
have also been developed. These data-driven methods use the
powerful mapping capabilities of neural networks, combined
with a large amount of training data, to establish the complex
mapping between inputs and targets, so as to achieve the
purpose of denoising. The learning-based rPPG methods can
be generally divided into two types according to the differ-
ences of inputs. The end-to-end rPPG methods directly build
the mapping between the video frames and the target HR
information. For example, Chen and Mcduff [10] proposed
an end-to-end network by combining a convolutional neural
network (CNN) with an attention mechanism, which can
perform robust measurement under challenging environments.
In contrast, the feature-decoder rPPG methods usually recover
the HR information from well-designed feature maps using
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a decoder network. For instance, Niu et al. [11] extracted
HR values from spatiotemporal representation images by a
CNN. Song et al. [12] introduced a different way to construct
spatiotemporal feature images considering the intrinsic char-
acteristics of pulse signals. More developments of rPPG can
be referred to the latest reviews, such as [1] and [13].

Unlike rPPG, the iBCG methods measure HR information
from rhythmic head movements caused by heart beating.
In 2013, Balakrishnan et al. [3] first proposed to measure HR
values using BCG signals extracted from videos. This method
tracks feature points from facial regions, where the vertical
traces are processed to determine HRs. Compared with rPPG,
the iBCG has the advantage of not necessarily using skin
regions. On the other hand, the iBCG is not so sensitive to
different types of skin colors or ambient light variations. The
main challenge of iBCG is devoted to eliminating motion arti-
facts. This is attributed to the fact that the movements caused
by periodic heart activity are quite weak, and they are easily
dominated by voluntary head motions or facial expressions.
Head motions can be considered as rigid motions that globally
affect all feature points within different regions of interest
(ROIs), while facial expressions are considered as nonrigid
motions that only cause local interference to feature points
within some of the ROIs. Existing iBCG studies to denoise
motion artifacts are mainly divided into two categories. The
first type is to select proper ROIs that are less affected by
motion artifacts [14], [15]. This kind of method can only
suppress local motion interference. The second type is to
decouple the pulse signal from the raw vertical traces using
complicated signal processing algorithms [16]. Although these
methods have achieved good results, more explorations are still
needed to deal with complex motion interferences in iBCG.

In this article, we propose a novel method, called robust
iBCG (RiBCG), to remove both rigid and nonrigid motion arti-
facts in iBCG with a two-step canonical correlation analysis
(CCA). The feature points are determined and tracked within
two different ROIs from the face, where we derive the vertical
traces of feature points as raw iBCG signals following the
same way as existing works. It is observed that the vertical
and horizontal traces are both affected by rigid motions and,
thereby, have strong correlations. The CCA is a typical method
to extract relevant components between the two data sets.
Accordingly, the first CCA is applied to both the vertical and
horizontal traces within each ROI to remove the shared rigid
motion artifacts. The first few canonical variates (CVs) with
higher correlation coefficients are set to zero to reconstruct
the rigid-motion-free vertical traces. The principal component
analysis (PCA) is then separately applied to the reconstructed
vertical traces to derive the corresponding principal compo-
nents (PCs) for dimension reduction. Since the motions caused
by facial expressions have low spatial correlations, the second
CCA is used to extract the common iBCG pulse signals
from the two sets of PCs. Finally, HR is determined through
a power spectrum analysis for all candidate CVs derived
from the second CCA. In order to ensure the continuity of
the estimated HRs, an improved version of RiBCG, termed
RiBCG-C, is also proposed. Both the proposed methods are
compared with several typical video-based HR measurement

methods on two public databases, where our methods achieve
superior performance, especially for the case with obvious
motion artifacts.

In summary, the main contribution of this article is that
we introduce a framework to effectively remove both rigid
and nonrigid motion artifacts in iBCG. The proposed methods
can achieve more reliable iBCG measurements compared
with other conventional ones that are usually unable to work
under significant motion artifact situations. Considering that
iBCG does not necessarily require skin regions as rPPG,
it is more robust against illumination variations, which can
potentially extend the application scope of video-based remote
HR measurements.

The rest of this article is prepared as follows. Section II
introduces some related works of conventional iBCG methods.
The proposed method is given in Section III. The experimental
setup and comparison results are presented in Section IV.
Finally, we conclude this article in Section V.

II. RELATED WORKS

As early as in 1877, Gordon [17] found that the blood
pumping from the heart caused slight mechanical movements
of the body. Under this principle, the BCG measurement was
first introduced in the late 1930s [18]. Conventional BCG
techniques usually measure vital movements of the human
body with sensors, such as electromechanical films integrating
with beds or chairs. The obtained BCG signals can be further
employed in health monitoring, subject identification, and so
on. For example, Rao et al. [19] introduced a hybrid deep
neural network (DNN) to classify sleep stages using BCG
signals. Cimr and Studnička [20] employed the BCG signals
to detect disordered breathing with CNN. Zhang et al. [21]
investigated the effect of BCG signals for subject identification
using different structures of recurrent neural networks (RNNs).
A brief review of conventional BCG methods with BCG
sensors can be referred to [22] and [23].

Since first proposed by Balakrishnan et al. [3] in 2013, many
studies of iBCG have been proposed to overcome the interfer-
ence of motion artifacts. One common way is to select proper
ROIs that are less disturbed by motion artifacts. Accordingly,
the forehead and nose regions are usually chosen as the ROIs
in existing iBCG techniques. For example, Shan and Yu [14]
extracted the iBCG signal using traces of a single feature point
from a small region of the forehead. Haque et al. [24] com-
bined facial landmarks with the commonly used feature points
to overcome the tracking difficulty under motion interference.
Cai et al. [15] used feature points from the ear instead of the
ones from the face, which completely avoided local motion
artifacts due to facial expressions.

Besides choosing a proper ROI, there are also various
algorithms proposed to decouple the pulse signal from motion-
contaminated vertical traces. Hassan et al. [16] introduced a
method to identify motion artifacts and prune them directly
from the raw iBCG signals. The HR was then estimated by
fitting all candidate HRs obtained from the denoised traces
under a normal probability distribution. Wang et al. [25] took a
three-layer temporal filtering on the vertical traces to eliminate
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Fig. 1. Flowchart of the proposed two-step CCA method.

motion artifacts. The temporal filters included a limiting
filter, a moving averaging, and a Butterworth bandpass filter,
which were proved effective to suppress the voluntary head
movements if the corresponding spectrum was not overlapped
with that of the iBCG pulse signal.

According to the aforementioned studies [3], [16], [24],
[25], the ROIs are usually determined to reduce the local
influence of facial expression, while filtering or cropping of
raw iBCG signals is taken to remove the global rigid motion
artifacts. In this article, we will introduce a novel method to
remove both rigid and nonrigid motion artifacts under a two-
step CCA framework.

III. METHODS

The flowchart of the proposed method is illustrated in Fig. 1.
First, two ROIs are located, corresponding to the forehead and
nose regions, respectively. A two-step CCA is then employed
to remove both local and global motion artifacts. Finally, the
iBCG pulse signal is selected among all CVs, and the HR
value is estimated by a power spectral density (PSD) analysis.

Before introducing the detailed framework, the following
notations are listed to avoid ambiguity. The scalar values,
vectors, and matrices are denoted by lowercase italic let-
ters, lowercase boldface letters, and capital boldface letters,
respectively.

A. ROI Selection and Feature Point Tracking

The traces of feature points are essential to determine the
iBCG signals. Fig. 2 shows the location of the two determined
ROIs. A bounding box, locating the facial region, is first
derived by the well-known Viola–Jones face detector [26].
Based on the generated bounding box, two ROIs correspond-
ing to the forehead and the nose region are defined. Next,
the feature points within each ROI are determined by the
method of good features to track [27] and then tracked by
the Kanade–Lucas–Tomasi (KLT) algorithm [28]. Both the
vertical and horizontal raw traces can be generated. To avoid
tracking failures, we only retain the most stable feature points
as in [3].

Fig. 2. Definition of two separate ROIs: an example from the COHFACE
database.

Suppose that X(t) = [x1(t), x2(t), . . . , xn(t), . . . , xN (t)]T ,
and t = 1, 2, . . . , K is the data matrix composed by the
horizontal traces of feature points, where K is the total number
of frames, T is the transpose, and N is the total number of
feature points. Each column of X(t) indicates a trace vector
of a single point, and there are total N columns in X(t).
Similarly, Y(t) = [y1(t), y2(t), . . . , yn(t), . . . , yN (t)]T , and
t = 1, 2, . . . , K represents the data matrix composed by the
vertical traces of feature points. The vertical traces are also
considered as raw iBCG signals that are contaminated with
local or global motion artifacts.

B. Rigid Motion Artifact Removal

Rigid motions have a global impact on all feature points.
Voluntary head movements usually lead to a visible change to
all feature points. Fig. 3 shows the correlations of vertical and
horizontal traces under situations with some typical rigid head
motions. It can be observed from Fig. 3 that the horizontal
and vertical traces are highly correlated when the head is
voluntarily moved, such as rotating, swing, and nodding.

Under a BSS framework, the X(t) and Y(t) trace signals
are assumed to be linear mixtures of source signals as follows:

X(t) = AX SX (t), Y(t) = AY SY (t) (1)
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Fig. 3. Correlation of horizontal and vertical traces under rigid head motion
situations. (a) Rotating. (b) Swing. (c) Nodding. (d) Turning.

where SX (t) = [s1
X (t), s2

X (t), . . . , sN
X (t)] and SY (t) =

[s1
Y (t), s2

Y (t), . . . , sN
Y (t)], t = 1, 2, . . . , K , are the unknown

source signals, respectively. AX and AY are the mixing matri-
ces, respectively.

The unknown source signals can also be represented in
demixing forms as follows:

S̃X (t) = WX X(t), S̃Y (t) = WY Y(t) (2)

where WX and WY are the corresponding demixing matrices,
and S̃X (t) and S̃Y (t) are the recovered sources, respectively.

We aim to identify the rigid-motion related sources and
reconstruct vertical traces without the influence of these
sources. Since X(t) and Y(t) are highly correlated, we take
a CCA to remove rigid motion artifacts in vertical traces
regarding the horizontal ones.

Suppose that u = wT
1 X(t) and v = wT

2 Y(t) are the CVs,
where w1 and w2 are the weight vectors, respectively. The
objective function of CCA is defined as

max
w1,w2

r(u, v) = wT
1 �12w2√

wT
1 �11w1

√
wT

2 �22w2

(3)

where r indicates the correlation coefficient, �11 and �22 are
the autocovariance matrices of X(t) and Y(t), respectively, and
�12 is cross-covariance matrix of X(t) and Y(t).

The CCA problem in (3) can be solved through a method
of Lagrange multiplier. We obtain a set of CVs, {u j }N

j=1 and
{v j}N

j=1, with correlation coefficients in a decreasing order.
These CVs are corresponding to the correlated sources in
S̃X (t) and S̃Y (t).

The first few CVs with higher correlations are considered to
be related to rigid motion artifacts, and the target iBCG signals
are contained in the remaining CVs with lower correlations.
This is because the rigid motion has global impacts on all
feature points within different ROIs, and the energy of the rigid
motion is much stronger than that of the target iBCG signal.
Therefore, it is important to determine the order of noisy CVs
and set them to zeros for reconstructing the rigid-motion-free
vertical traces. To do this, we propose an L-curve method and
choose the turning point to determine the truncation order of
CVs. The full L-curve algorithm is listed in Algorithm 1.

In Fig. 4, we visually explain the L-curve algorithm using an
example with clear voluntary head movements. The correlation

Algorithm 1 L-Curve Algorithm
1: Check whether rigid motion is contaminated in vertical

traces of feature points. The average standard deviation
(SD) δ of all vertical traces is calculated and compared
with a predefined threshold μ. If δ > μ, then continue with
step 2. Otherwise, it indicates there is no rigid motion.

2: Set {v1(t), v2(t), . . . , vk(t)} to zero for k = 1, 2, . . . , N −
1, respectively, and reconstruct vertical traces to obtain
Yk(t) = {yk

1(t), yk
2(t), . . . , yk

N (t)}T .
3: Compute the correlation coefficients r(x1(t), yk

1(t)) for k =
1, 2, . . . , N − 1, and obtain a correlation coefficient vector
r = [r1, r2, . . . , rk, . . . , rN−1].

4: Treat r as a curve and get the turning point to determine
the order Ntp for the CVs to be set as zero.

Fig. 4. L-curve plotting of correlation coefficients between the original
horizontal trace and the reconstructed vertical trace with different orders of
CV cancellation: an example from the first feature point in the forehead ROI.

coefficients between the reconstructed vertical and the original
horizontal traces are plotted using the first feature point from a
forehead ROI. The reason why we only choose the first feature
point is that the rigid motions globally affect all feature points.
It can be seen from Fig. 4 that the correlation coefficient can
reach about 0.6 without the noisy CV cancellation. However,
when the first two pairs of CVs are set to zeros, the correlation
coefficient drops below 0.1. It indicates that the correlations
will reduce if the rigid-motion-related CVs are sequentially
removed from the reconstructed vertical trace until it reaches
a balance. For this example, the turning point is determined
as the red star marked in Fig. 4, which has an order of
Ntp = 3. It means that the first three orders of CVs will
be set to zeros to eliminate the rigid motion artifacts, and
Y3(t) is the reconstructed data matrix that has removed most
of the interference from the rigid motion artifacts. It should be
noted that the generation of L-curve only needs a single CCA
calculation, and it is fast enough for real-time applications.
By the way, if there is no rigid motion detected in algorithm 1,
then the first CCA can be omitted, which means that the raw
vertical traces will directly serve as the input of the next step.

C. Local Motion Artifact Removal

After separately removing rigid motion artifacts from all
the vertical traces in each ROI, the two sets of reconstructed
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vertical traces are assumed to share the same iBCG signals
but different local motion artifacts due to facial expressions
or speaking. This is consistent with the intrinsic correlation
properties of the pulse information derived from different
ROIs. Hence, the second CCA is utilized to extract the
common iBCG pulse signals from the two sets of rigid-motion-
free vertical traces. Before performing the second CCA, the
reconstructed vertical traces are detrended, bandpass filtered,
and compressed. The detailed process is given as follows.

1) First, the signal quality of the rigid-motion-free vertical
traces is further improved through detrending and band-
pass filtering. Especially, the detrending filter in [29] is
used with the smoothness parameter as 20.0. The third-
order Butterworth bandpass filter is then applied with a
frequency interval of [0.75 3.0] Hz to remove the noise
components beyond normal HR spectrums.

2) Next, the PCA is applied separately to the filtered
vertical traces in each ROI, with the aim of reducing the
dimension. The first five PCs are empirically selected as
the input for the second CCA.

3) Finally, the second CCA is applied to the two sets of
PCs to find the target iBCG pulse signal.

D. Pulse Selection and HR Estimation

In order to determine the target iBCG signal, we derive
the spectrums of all candidate CVs after the second CCA by
the Lomb–Scargle PSD [30]. The target iBCG signal is then
selected as the one with the highest normalized power peak.
Finally, the HR value is estimated as f × 60, where f is
the dominate frequency in PSD spectrums of the target iBCG
signal.

During the experiment, we observe that the selected iBCG
signals occasionally (about 5% percentages) correspond to
HR outliers. Due to the fact that HR values are continuously
changing during a short period of time, thereby, we introduce
an improved version of RiBCG, termed RiBCG-C, to further
improve the performance of HR measurements. Fig. 5 illus-
trates the flowchart of RiBCG-C.

As shown in Fig. 5, we first need to identify the HR outliers
for each video. The HR vector obtained in a single video is
denoted as h. The SD of h is then used as an indicator to
determine whether there is an outlier or not. We compare the
SD of h with a predefined threshold STh. If it is higher than
STh, we think that there is an outlier in the estimated HRs
as the one with the largest difference from the mean value
of h. It should be noted that there may be more than one
outliers that are wrongly selected. Thus, after finding the first
outlier, we remove the outlier from h and compute the SD of
remaining HRs again until it is less than STh. The remaining
HRs in h are considered to be normal. The indices of all
outliers are recorded in a vector of IDXabnor. The next step
is to correct the outlier HRs. For the index j in IDXabnor,
we use the remaining HRs in h to correct it. In detail, we find
two nearest windows of j in h and use the average value HRref

of the corresponding HRs as a reference. The HR in the j th
window is then reselected from all CVs of the same window
in the second CCA. Particularly, we choose the one that is
closest to HRref to correct the current HR outlier.

Fig. 5. Flowchart of the RiBCG-C method.

Fig. 6. HR distributions of PPG signals in UBFC-RPPG, COHFACE1, and
COHFACE2, respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we will evaluate the performance of the
proposed methods on two public databases: UBFC-RPPG
[31] and COHFACE [32]. The UBFC-RPPG database con-
tains dominant voluntary motion artifacts, and hence, it is
very challenging for iBCG measurements. The COHFACE
database contains different illumination conditions and is
suitable for validating the robustness of the proposed RiBCG
and RiBCG-C methods against illumination variations. The
performance will be compared with that of several typical
video-based HR measurement methods on the aforementioned
two databases.

A. Experimental Settings

1) UBFC-RPPG Database: The UBFC-RPPG database
[31] contains 42 videos from 42 subjects. These videos last
for about 1 min and were recorded by Logitech C920 HD
pro RGB camera using an uncompressed 8-bit format. The
resolution of each video is 640 × 480, and the frame rate
is 30 frames per second (fps). The reference PPG signals
were recorded by Contec Medical CMS50E at a sampling rate
of 60 Hz. The HR values of each subject in the experiment
were remarkably changing since the subjects were asked
to play a time-sensitive mathematical game in front of the
computer. The HR distribution is illustrated in Fig. 6, where
the HR values in UBFC-RPPG vary from 50 to 140 beats
per minute (bpm). Meanwhile, many subjects have obvious
voluntary head movements, which makes it difficult to acquire
reliable iBCG measurements.

2) COHFACE Database: The COHFACE database [32]
contains 160 videos from 40 subjects. The videos were
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Fig. 7. Bland–Altman plots of HR on the UBFC-RPPG database.

Fig. 8. Statistical histograms of HR errors on the UBFC-RPPG database.

recorded by the Logitech HD C525 Webcam with a resolution
of 640 × 480 and a frame rate of 20 fps under realistic
conditions. The reference pulse signals have been acquired
using a blood-volume pulse (BVP) sensor from Thought
Technologies. Each subject had four videos: two videos were
recorded under controlled illumination conditions, and the
other two were taken under natural illumination conditions.
Accordingly, we divide the COHFACE database into two parts:
the so-called COHFACE1 with controlled illuminations and
the COHFACE2 with natural illuminations. It should be noted
that the two ROIs used in COHFACE2 are both defined as
the left half of those in Fig. 2 to remove the totally dark
regions. This can effectively reduce the failure of tracking

feature points. It can be found from Fig. 6 that the distributions
of HR values in COHFACE1 and COHFACE2 both change
from 45 to 100 bpm.

For each video in the two databases, the processing window
was set as 30 s with a 5-s overlapping between the neighboring
windows. In the experiment, the threshold μ in the L-curve
algorithm was set as 2.5 to determine whether there was a
rigid motion in each processing window. The threshold STh

of the RiBCG-C algorithm in Fig. 5 was set as 10.0 and 6.0
for UBFC-RPPG and COHFACE databases, respectively. The
threshold STh for the UBFC-RPPG was higher than that for
the COHFACE database due to the fact that the variation of
HR values in UBFC-RPPG was remarkably stronger.
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Fig. 9. Bland–Altman plot of HR measurement on the COHFACE database with controlled illuminations: COHFACE1.

Fig. 10. Bland–Altman plot of HR measurement on the COHFACE database with natural illuminations: COHFACE2.

B. HR Estimation Results
We compare the proposed methods with some other meth-

ods, including ICA [7], CHROM [9], POS [8], the original
iBCG [3] (iBCG-original), the iBCG with motion artifact
removal [16] (iBCG-MAR), and the iBCG with three-layer
filter [25] (iBCG-TLF). The implementation of the first four
comparison methods has been referred to a public toolbox
“iPhys" [33]. All these methods employed the same ROIs as
defined in Fig. 2. Several metrics are used to evaluate the
performance, including the root mean square error HRrmse,
the mean absolute error HRmae, SD HRsd , and Pearson’s
correlation coefficient r . The detailed definitions of these
metrics can be found in [12].

Table I shows the averaged HR results of different methods
on the UBFC-RPPG database. Since the POS and CHROM

methods are designed to suppress motion artifacts following
the skin optical reflection model, these two methods achieve
outstanding results on this database with correlation coeffi-
cients r as 0.96 and 0.97, respectively. In comparison, the
results of all the three existing iBCG methods are not satisfac-
tory. Particularly, the iBCG-MRA achieved better performance
than the other two, where HRrmse is 21.56 bpm, the HRmae is
15.72 bpm, and the correlation coefficient r is 0.44. The reason
is that rigid motion artifacts seriously affect the performance
of those iBCG methods. In contrast, the proposed RiBCG
method achieves a much better performance than that of iBCG,
where HRrmse is 10.22 bpm, HRmae is 5.43 bpm, and the
correlation coefficient r is 0.85. However, the RiBCG has
no clear advantage over the two model-based rPPG methods
on the UBFC-RPPG database. To further improve the results
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Fig. 11. Statistical histograms of HR errors on the COHFACE database with controlled illuminations: COHFACE1.

Fig. 12. Statistical histograms of HR errors on the COHFACE database with natural illuminations: COHFACE2.

using the continuity of HR, the RiBCG-C achieves the results
of HRrmse as 4.95 bpm, HRmae as 3.52 bpm, and r as 0.96.
The performance of RiBCG-C is on the same level as that of
the CHROM and POS methods on the UBFC-RPPG database,
which proves the effectiveness of the proposed method in the
presence of motion artifacts.

To further demonstrate the performance for individual
samples, the Bland–Altman plots and the error distribution
histograms of all methods are illustrated in Figs. 7 and 8,
respectively. It can be observed from Fig. 7 that the results
of RiBCG are much more consistent with the reference ones
compared with those of the existing iBCG methods. However,

there are still some obvious HR outliers using RiBCG, which
indicates the reason why RiBCG achieves slightly worse
results than those of the two model-based rPPG methods.
Nevertheless, the RiBCG-C, considering the continuity of HR
during a short period of time, remarkably reduces the HR
outliers and, hence, achieves comparable results compared
with those of the comparison methods. The error distributions
in Fig. 8 demonstrate a similar trend as the Bland–Altman
plots. Thus, we will not go into too much detail.

Next, we compare the performance of all methods on the
COHFACE database with different illuminations. Table II
shows the averaged HR results of the COHFACE1 database
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TABLE I

AVERAGED HR RESULTS OF DIFFERENT METHODS
ON THE UBFC-RPPG DATABASE

TABLE II

AVERAGED HR RESULTS OF DIFFERENT METHODS IN COHFACE1
DATABASE WITH CONTROLLED ILLUMINATIONS

TABLE III

AVERAGED HR RESULTS OF DIFFERENT METHODS IN COHFACE2
DATABASE WITH NATURAL ILLUMINATIONS

with controlled illuminations. The model-based CHROM and
POS methods do not achieve satisfactory results as they have
done on the UBFC-RPPG database. The reason may be that
the videos in the COHFACE database were recorded in a com-
pressed format, which may break the assumption of the optical
reflection model. We observe that the three existing iBCG
methods achieve much better results on this database than
the UBFC-RPPG database. This is as expected because the
subjects in COHFACE were asked to stay still, and visually,
there are very few voluntary head movements. The proposed
RiBCG method achieves the best results compared with those
of the other methods, where the HRrmse is 7.63 bpm, HRmae

is 2.81 bpm, and r is 0.79, which suggests that although the
subjects in COHFACE database are relatively more stationary
than those in UBFC-RPPG database, the slight movements still
can easily interfere the iBCG measurement since the latter one
is really too weak. As expected, the RiBCG-C further improves
the performance of RiBCG. The correlation coefficient has
been improved by 11.39%, which is increased from 0.79
to 0.88.

Similar results are shown in Table III on the COHFACE2
database with natural illuminations. The proposed RiBCG

method gets the HRrmse as 9.40 bpm, HRmae as 4.18 bpm, and
the correlation coefficient r as 0.82. In contrast, we observe
that the performance of RiBCG is slightly degraded on
COHFACE2 compared with that of COHFACE1. This indi-
cates that the illumination condition also affects the accu-
racy of iBCG methods. It may increase the difficulty of
tracking feature points. The performance degradation due to
the change of illumination conditions can also be observed
from the Bland–Altman plots in Figs. 9 and 10, respectively.
We find that the results of RiBCG have more outliers on
COHFACE2 than COHFACE1, where 5%–6% samples have
relatively large errors. Consistent with the results on the
UBFC-RPPG database, the RiBCG-C method further improves
the results of RiBCG and gets overall the best performance.
This is also demonstrated by the error distribution histograms
in Figs. 11 and 12, where we can find that the errors of
RiBCG-C are more concentrated than those of the RiBCG.

Besides the comparison methods listed above, some
other latest results of video-based HR measurements on
the COHFACE database are also listed here for refer-
ence. Gupta et al. [34] proposed an rPPG method, termed
“MOMBAT,” to monitor HR using pulse modeling and
Bayesian tracking. The MOMBAT method achieved the per-
formance of HRmae as 5.89 bpm, HRsd as 7.38 bpm, and
Pearson’s correlation coefficient r as 0.62 on the COHFACE
database. Hernandez-Ortega et al. [35] took a comparison
study of several rPPG methods on the COHFACE database,
and they found that the learning-based methods outperformed
the conventional handcrafted ones. Particularly, the “Deep-
Phys” method in [10] gets the best HRmae as 3.79 bpm.
Tsou et al. [36] introduced a Siamese-rPPG network to mea-
sure the HR following an end-to-end way. The testing results
on the COHFACE database are quite nice, where HRrmse

is 1.29 bpm, HRmae is 0.70 bpm, and Pearson’s correlation
coefficient r is 0.73. However, it should be indicated that the
above results of learning-based methods in [35] and [36] were
all obtained using the training data from the same database.
Therefore, the generalization ability of related learning models
has not been fully tested yet on this database.

In summary, the proposed method achieves similar perfor-
mance in the UBFC-RPPG database compared with the bench-
mark methods. This verifies the effectiveness of the RiBCG
against motion artifacts. It also outperforms the comparison
methods in the COHFACE database, which demonstrates
the superior performance of iBCG-type methods over rPPG
methods for videos with illumination variations.

V. CONCLUSION

In this article, we have introduced a novel iBCG method,
termed RiBCG, to measure HR with a two-step CCA in the
presence of both rigid and nonrigid motions. We determine
feature points from two different ROIs from the face and get
the horizontal and vertical traces through a tracking scheme,
where the vertical ones are considered as raw iBCG signals.
With the help of the first CCA, the rigid motions can be
separately removed from the vertical traces of feature points in
each ROI according to the high correlations with the horizontal
traces. The obtained rigid-motion-free vertical traces are then
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compressed by PCA to reduce the dimension. Next, the
second CCA is utilized to extract the common target iBCG
signals from two sets of obtained PCs based on low spatial
correlations of nonrigid motions. Finally, the HR value is
selected as the one with the highest peak of power spectrums
among all CVs. The improved version of RiBCG, the so-called
RiBCG-C, has also been proposed to remove the HR outliers
according to the continuity of HR values during a short period
of time. The experimental results on two public databases
have demonstrated that the proposed methods have achieved
significant improvements compared with three existing iBCG
methods, where the RiBCG-C method has got overall the best
results. The proposed methods have been proven to be effective
for measuring HRs under realistic environments, and they are
expected to expand the application scope of iBCG techniques.
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