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Abstract

In this paper, we consider a problem to extract independent source component vector (SCV) formed by quasi-periodic
signals from instantaneous mixtures in multiple data sets. We propose a method, termed as constrained independent
vector extraction (CIVE), to uniquely determine the target quasi-periodic SCV. Specifically, the negentropy is taken
to enforce the independence of the target SCV from the others, while the mutual information is used to determine the
correlation of sources within the target SCV. A quasi-periodic constraint is further combined in the cost function to ensure
the quasi-periodicity of the SCV. The demixing vectors of target SCV are solved as a constrained optimization problem
by the Lagrange multiplier method. The CIVE method is designed to work under diverse probability distributions for
the mixed signals. In the experiments, the CIVE method is verified with both simulated and semi-simulated data. The
comparison results with other methods indicate the effectiveness, applicability and stability of the proposed method for
extracting quasi-periodic SCVs.

Keywords: Joint blind source separation (JBSS), Constrained independent vector extraction(CIVE), Quasi-periodic
signal

1. Introduction

Quasi-periodic signals appear commonly in communi-
cation, radar, and biomedical signal processing [1, 2]. In
these fields, there is a strong demand to extract quasi-
periodic components from instantaneously mixed signals
in a single data set or multiple data sets. For example, in
remote photoplethysmography (rPPG) applications [3, 4],
it is known that the blood volume varies periodically with
the heartbeat, leading to related changes in skin colors.
The RGB channels obtained in each skin region of interest
(ROI) are considered to be linear mixtures of pulse signal
with noise signals. The purpose of rPPG is to extract the
quasi-periodic pulse signal from a single skin ROI (single
data set) or multiple skin ROIs (multiple data sets).

The blind source separation (BSS) method is a standard
technique to demix source signals with observations from
a single data set. Among these methods, the independent
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component analysis (ICA) [5, 6] is a very commonly-used
method to solve BSS problems based on statistical inde-
pendence. The negentropy [7], mutual information [8], or
likelihood function [5] is usually defined in the cost func-
tions of ICA to enforce the statistical properties of source
signals. Different from the ICA which only relies on sta-
tistical assumptions, the constrained independent compo-
nent analysis (CICA) [9] can further introduce prior infor-
mation as a constraint into the source separation process,
which transforms the original problem into a constrained
optimization problem. Due to the use of constraints, CICA
can only separate the target signal, which can be regarded
as a blind source extraction (BSE) method.

There exist many studies using BSS or BSE to extract
periodic or quasi-periodic signals from a single data set.
For example, the AMUSE (algorithm for multiple un-
known signals extraction) [10] and the SOBI (second-order
blind identification) [11] are efficient second-order meth-
ods for separating quasi-periodic signals, which explore the
time-correlation structure of target signals. Zhi-Lin Zhang
[12] used CICA to get periodic signals through defining a
constraint with a proper reference signal. Richard Macwan
et al. [13] employed the autocorrelation as a constraint to
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extract a quasi-periodic signal with CICA. Thato Tsalaile
and others [14] combined the sequential blind extraction
algorithm [15] and the time-varying lag calculation proce-
dure [16] to extract quasi-periodic signals. Hassan Akbari
et al. developed a method based on Tucker decomposition
[17, 18] and quasi-periodic nature to extract the quasi-
periodic signal [19]. In general, the BSS methods have the
issue of source permutations [9] if all sources need to be
decoupled. The performance of BSE methods are highly
dependent on the designed constraint.

The use of multiple data sets to obtain the shared quasi-
periodic signals will fully utilize the correlation of the tar-
get signals in each data set, which provides more useful
information for overcoming the issue of BSS or BSE. In
each data set, the quasi-periodic source signal is assumed
to linearly mix with other non-target source signals. The
target quasi-periodic source signals are dependent on each
other, and independent with other non-target source sig-
nals across all data sets. The correlated source signals
compose a source component vector (SCV) [20]. The pur-
pose of this study is to determine the target quasi-periodic
SCV from the multiple data sets.

According to the problem definition, the joint blind
source separation (JBSS) is a feasible scheme to solve
the target problem. Independent vector analysis (IVA)
[20, 21, 22, 23], the extension of ICA on multiple data
sets, is a typical JBSS method to extract all independent
SCVs from multiple data sets. The cost function of IVA
consists of mutual information to maximize the indepen-
dence between the SCVs and the dependence within the
SCVs [22]. IVA is very efficient to solve problems that
meet its assumptions. However, IVA may not converge if
the actual problems break its assumptions. For example,
the signals within the non-target SCV are independent or
the non-target SCVs are dependent with each other. Be-
sides, IVA needs to separate all SCVs, which reduces the
efficiency if only the target SCV with some prior informa-
tion like quasi-periodicity is desired.

Many methods [24, 25] improve the performance of IVA
through incorporating prior information into the cost func-
tions. For example, the constrained independent vector
analysis (CIVA) [24, 26] combine new constraints from
prior information to separate SCVs. Geometrically con-
strained IVA [25] added a geometrical penalty term to the
cost function of IVA to extract the desired SCV. Super-
vised independent vector analysis (SIVA) [27] introduced
additional supervising components named pilot signals as
prior information. The above methods improve the perfor-
mance of IVA through restricting the separation with prior
information. But these methods still require to determine
the entire demixing matrices.

Unlike IVA to separate all SCVs, independent vector
extraction (IVE) [28, 29] can determine only one non-
Gaussian independent SCV from a set of instantaneous
mixtures based on the maximum likelihood principle. IVE
is the extension of independent component extraction
(ICE), of which objective function is the log-likelihood

function of target signal. However, the ICE/IVE assumes
the target signal is non-Gaussian with Gaussian back-
ground and it requires initials of the mixing vector or
demixing vector. This strong assumption limits its ap-
plication in solve the target problem because the initial
value is usually not available and the distribution of the
quasi-periodic signal may be diverse.

In this paper, we propose a novel method, named as
constrained independent vector extraction (CIVE), to ex-
tract the quasi-periodic SCV from multiple data sets. The
mutual information and negentropy are used together in
the cost function of CIVE. Particularly, the mutual in-
formation is taken to enforce the dependence within the
target SCV, while the negentropy is taken to enforce the
independence of target SCV with other non-target SCVs
[7]. The CIVE can only calculate the target unmixing
vector instead of the full demixing matrix, thereby mak-
ing the unique extraction of the target SCV possible. Fi-
nally, the autocorrelation of the target SCV is maximized
in the loss as a constraint to ensure the quasi-periodicity
[13]. The constrained optimization problem can be solved
by the augmented Lagrange multiplier method. In ex-
periments, we verify the efficiency, stability, and accuracy
of the proposed method using both simulated and semi-
simulated data. The comparison results with some other
typical methods demonstrate the superior performance of
CIVE to solve the target problems.

The main contribution of this paper is that we propose
an effective method to determine the quasi-periodic SCV
from multiple sets of instantaneous mixtures. The CIVE
method can extract only the target SCV, which avoids the
issue of target selection in other BSS methods, thereby
improving the efficiency of the separation. In contrast,
the IVA methods like CIVA still need to solve the full un-
mixing matrices, even if we only need one target SCV.
Meanwhile, the CIVE does not require initial guesses of
the demixing vectors like IVE. The CIVE method is also
applicable for extracting target quasi-periodic SCVs with
diverse probability distributions. Therefore, it has a wide
range of applications and the comparison results demon-
strate a superior performance over existing methods for
solving the target problems.

The structure of following contents is as follows. In Sec-
tion 2, we describe the problem and the proposed algo-
rithm. The experiments are demonstrated in Section 3
and finally we conclude the paper in Section 4.

2. Method

2.1. The problem formulation

The formulation of the target problem is similar to that
of JBSS in [23]. Suppose there are K data sets and each
contains N observed signals, which are linear mixtures of
a target quasi-periodic source signal and N − 1 non-target
source signals,

x[k] = A[k]s[k], 1 ≤ k ≤ K,

2



where x[k] = [x
[k]
1 , · · · ,x[k]

N ]T is the kth data set (with
size of N ×M , N is the total number of sources in each
single data set, and M is the total number of sampling
points), the superscript T denotes the transpose, and

x
[k]
i = [x

[k]
i (1), . . . , x

[k]
i (M)] is the ith observed signal (a

row vector) in the kth data set. The s[k] = [s
[k]
1 , · · · , s[k]N ]T

is the source signal matrix (with size ofN×M) correspond-

ing to the kth data set, where s
[k]
i = [s

[k]
i (1), . . . , s

[k]
i (M)]

indicates the ith source signal (a row vector) in the kth
data set with M sampling points. Here A[k] ∈ RN×N ,
is the invertible mixing matrix of the kth data set. The
source signals in the same sequence in each data set form

a SCV, such as the nth SCV is sn = [s
[1]
n , · · · , s[K]

n ]T . For
ease of description, we use the symbol sp hereafter to de-
note the target quasi-periodic SCV. The total K source
signals in a SCV are dependent on each other and they
are independent with the source signals in other SCVs.

The purpose of this paper is to find K demixing vectors
so as to get the estimations of sp. The kth demixing vector

of sp is denoted as (w
[k]
p )T , which is the pth row of the

demixing matrix W[k] with W[k] = (A[k])−1 [20]. The
estimation of the kth target source signal is represented

as y
[k]
p = (w

[k]
p )Tx[k], where y

[k]
p indicates the estimation

of s
[k]
p , and yp = [y

[1]
p , · · · ,y[K]

p ]T is the estimation of sp.
We assume all source signals have unit variance with zero
mean. Below we will show the algorithm to calculate the
K demixing vectors.

2.2. Cost function

In order to determine the K demixing vectors of tar-
get SCV, we maximize the cost function composed of the
negentropy and the mutual information as defined in Eq.
(1),

ICIVE = α

K∑
k=1

J(y[k]
p ) + I(yp)

= α

K∑
k=1

J(y[k]
p ) +

K∑
k=1

H(y[k]
p )−H(yp), (1)

where
∑K
i=1 J(y

[i]
p ) is the negentropy of all signals in the

target SCV to enforce the independence of the target SCV
with other SCVs, I(yp) is the mutual information function
to ensure the dependence of signals within the target SCV,
H(yp) is information entropy of yp, and α is a weight
constant to balance the two terms. Unless necessary, α is
ignored in the following derivation.

Considering the difficulty of calculating
∑K
i=1 J(y

[i]
p ), we

choose an approximation of the negentropy as J(y
[k]
p ) ≈

ρ[E{G(y
[k]
p )} − E{G(v)}]2, where ρ is a constant, v is a

Gaussian variable with unit variance and zero mean, and
G(·) is a non-quadratic function [5]. As suggested by [30],
we choose the function G(·) as

G(y[k]p ) =
log(cosh(a · y[k]p ))

a
, a ≥ 1 (2)

where cosh(·) is the hyperbolic cosine function and a is a
constant with default value as 1.0.

To ensure the quasi-periodicity of target SCV, we fur-
ther add an autocorrelation constraint [13] in the cost
function. The autocorrelation constraint has an inequality
form as

g(w[k]
p ) = ξ[k] − E{(r[k]p )2} ≤ 0, 1 ≤ k ≤ K (3)

where ξ[k] denotes the threshold for the lower bound of

the autocorrelation of y
[k]
p , E{(r[k]p )2} is the mathematical

expectation of the variable (r
[k]
p )2, and r

[k]
p is the autocor-

relation of y
[k]
p as

r[k]p (m) =

M−m∑
i=0

(y[k]p (i)y[k]p (m+i)), 1 ≤ m ≤M, 1 ≤ k ≤ K.

(4)

Furthermore, we constrain y
[k]
p to have an unit variance

h(w[k]
p ) = E{(y[k]p )2 − 1} = 0, 1 ≤ k ≤ K. (5)

In summary, the full cost function of the target problem
can be defined as

Maximize : ICIVE(w[k]
p ) = αJ(y[k]

p ) +H(y[k]
p )−H(yp) + ck

Subject to : g(w[k]
p ) ≤ 0, h(w[k]

p ) = 0, 1 ≤ k ≤ K (6)

where ck = α
∑K
i=1,i6=k J(y

[i]
p ) +

∑K
i=1,i6=kH(y

[i]
p ) contains

all terms that are fixed with respect to changes in w
[k]
p .

2.3. Optimization of the cost function

We use the augmented Lagrange multiplier method to
solve the constrained optimization problem in Eq. (6). In
detail, we rewrite the cost function as

L(w[k]
p , µ[k], λ[k]) = ICIVE(w[k]

p )− 1

2γ
{−(µ[k])2

+[max{0, µ[k]+γg(w[k]
p )}]2}−λ[k]h(w[k]

p )+
1

2
β||h(w[k]

p )||2,
(7)

where µ[k] and λ[k] are the Lagrange multipliers corre-

sponding to g(w
[k]
p ) and h(w

[k]
p ), respectively, the γ and

β are penalty parameters, and || · || denotes the Euclidean
norm.

We take the Newton algorithm to update the demixing

vectors w
[k]
p . The iterative equations of w

[k]
p , µ[k] and λ[k]

in (7) are given as follows:

w[k]
p,new = w

[k]
p,old −H−1

∂L
∂w

[k]
p,old

,

µ[k]
new = max{0, µ[k]

old + γg(w
[k]
p,old)},

λ[k]new = λ
[k]
old + βh(w

[k]
p,old),

(8)
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where H = ∂2L
∂(w

[k]
p,old)∂(w

[k]
p,old)

T
is the Hessian matrix. Dur-

ing update, variable with the subscript old denotes the re-
sult of last update, while variable with the subscript new
indicates the result of the current update. More details
about the augmented Lagrange multiplier method can be
referred to [9, 31].

According to the update formulas in Eq. (8), we need
to calculate the gradient vector and Hessian matrix of the
augmented Lagrange function (7). Particularly, the gra-

dient vector of the L(w
[k]
p , µ[k], λ[k]) with respect to w

[k]
p

is

∂L(w
[k]
p , µ[k], λ[k])

∂(w
[k]
p )

= ρE{x[k](:,m) tanh(y[k]p )}

+ E{(φ[k](y[k]p ))x[k](:,m)} − E{x[k](:,m)φ[k](yp(:,m))}

− µ[k] ∂g(w
[k]
p )

∂w
[k]
p

− λ[k]E{x[k](:,m)y[k]p } (9)

where ρ = ρE{G(y
[k]
p )} − E{G(v)}, φ[k](y

[k]
p ) =

−∂ log{p(y[k]
p )}

∂y
[k]
p

and φ[k](yp(:,m)) = −∂ log{p(yp(:,m))}
∂y

[k]
p

are

score functions [22], which need to be calculated with ex-
plicit assumption of the probability distribution p(yp) for
the target SCV. Here x[k](:,m) denotes a multivariate vec-
tor formed by the variables of the observed signals in the
kth data set. yp(:,m) indicates the multivariate vector
of the target SCV. If there is no specific declaration, we
use the symbol (:,m) to indicate the multivariate vector
hereafter. The assumption and calculation of p(yp) are
described in the next section.

The first-order derivative of g(w
[k]
p ) in (9) is derived as

∂g(w
[k]
p )

∂w
[k]
p

= − 2

M
x[k]

M∑
m=1

U(m)r[k]p (m)(y[k]
p )T , (10)

where V(m) =

[
0(M−m)×m I(M−m)×(M−m)

0m×m 0m×(M−m)

]
and

U(m) = V(m) + V(m)T . The I(M−m)×(M−m) denotes
a (M − m) × (M − m) identity matrix, and 0(M−m)×m
denotes a (M −m)×m zero matrix.

The Hessian matrix of L(w
[k]
p , µ[k], λ[k]) is

∂2L(w
[k]
p , µ[k], λ[k])

∂(w
[k]
p )∂(w

[k]
p )T

= ρR[k]
x E{1− tanh2(y[k]p )}

+E{∂φ
[k](y

[k]
p )

∂w
[k]
p

(x[k](:,m))T }−E{∂φ
[k](yp(:,m))

∂w
[k]
p

(x[k](:,m))T }

− µ[k] ∂2g(w
[k]
p )

∂(w
[k]
p )∂(w

[k]
p )T

− λ[k], (11)

where R
[k]
x , E{x[k](:,m)(x[k](:,m))T } is the covariance

matrix of x[k](:,m). The second-order derivative of g(w
[k]
p )

in (11) is

∂2g(w
[k]
p )

∂(w
[k]
p )∂(w

[k]
p )T

= − 2

M
x[k]{

M∑
m=1

U(m)[y[k]
p U(m)(y[k]

p )T+r[k]p (m)]}(x[k])T .

(12)

The detailed derivation of
∂g(w[k]

p )

∂w
[k]
p

and
∂2g(w[k]

p )

∂(w
[k]
p )∂(w

[k]
p )T

can

be found in [13].

We observe that the derivations of E{∂φ
[k](y[k]

p )

∂w
[k]
p

(x[k](:

,m))T } and E{∂φ
[k](yp(:,m))

∂w
[k]
p

(x[k](:,m))T } are not complete

if the probability distribution p(yp) of the target SCV is
not provided. We will discuss it in the next section.

2.4. Probability distributions of target SCV

The target SCV is composed of quasi-periodic signals
and the probability distribution p(yp(:,m)) of multivari-
ate yp(:,m) can be Gaussian or non-Gaussian. In this
paper, we assume that p(yp(:,m)) is multivariate Gaus-
sian [22] or multivariate Laplace [32]. We name the CIVE
using multivariate Gaussian distribution as CIVE-G and
the CIVE using Laplacian distribution as CIVE-L.

First, we finish the calculation of (9) and (11) following
the multivariate Gaussian distribution,

p(yp(:,m)|Σp)

=
1

(2π)K/2 det(Σp)1/2
exp(−1

2
(yp(:,m))TΣ−1p yp(:,m))

(13)

where the covariance matrix of the target SCV sp(:,m)

is Σp , E{sp(:,m)(sp(:,m))T } because the sources are
assumed to have zero mean. We can get φ[k](yp(:,m)) and

φ[k](y
[k]
p (:,m)) in Eq. (9) as

φ[k](yp(:,m)) = −∂ log{p(yp(:,m))}
∂y

[k]
p

= eTkΣ−1p yp(:,m) = (yp(:,m))TΣ−1p ek (14)

and

φ[k](y[k]p ) = −∂ log{p(y[k]p )}
∂y

[k]
p

=
y
[k]
p

(σ
[k]
p )2

(15)

where (σ
[k]
p )2 is the variance of y

[k]
p , and ek represents the

kth column of the identity matrix IK×K . The detailed
derivation of (14) can be found in [22].

In practice, the approximations of Σ−1p and (σ
[k]
p )2 are

used instead, which can be estimated using the samples of

yp and y
[k]
p , respectively. The approximation of Σp is

Σ̂p =
1

M
ΣMm=1yp,old(:,m)yTp,old(:,m), (16)
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and the approximation of (σ
[k]
p )2 is

(σ̂[k]
p )2 =

1

M
ΣMm=1(y

[k]
p,old(m))2. (17)

Therefore, we can calculate E{φ[k](yp(:,m))x[k](:,m)}
and E{φ[k](y[k]p )x[k](:,m)} in (9) as

E{φ[k](yp(:,m))x[k](:,m)}
= E{x[k](:,m)(yp(:,m))T }Σ−1p ek (18)

and

E{φ[k](y[k]p )x[k](:,m)} = E{ y
[k]
p

(σ
[k]
p )2

x[k](:,m)}. (19)

Also, we can calculate E{∂φ
[k](yp(:,m))

∂w
[k]
p

(x[k](:,m))T } and

E{∂φ
[k](y[k]

p )

∂w
[k]
p

(x[k](:,m))T } in (11) as

E{∂φ
[k](yp(:,m))

∂w
[k]
p

(x[k](:,m))T } = Σ−1p R[k]
x (20)

E{∂φ
[k](y

[k]
p )

∂w
[k]
p

(x[k](:,m))T } =
R

[k]
x

(σ
[k]
p )2

. (21)

The derivation with p(yp(:,m)) following the multivari-
ate Laplace distribution [32, 33] can be done in similar way
and it is omitted here.

Although we only assume two types of probability dis-
tributions, the proposed method can also be applied to ex-
tract the target SCV under sub-Gaussian probability dis-
tributions, such as uniform probability distribution. We
will prove it in the experiments.

3. Experiments

In this section, we evaluate the effectiveness of the pro-
posed CIVE method for extracting quasi-periodic SCV.
To prove the capability of the CIVE method, we mainly
compare it with existing JBSS methods including IVA
[21, 22], CIVA [26], and IVE [28], using simulated and
semi-simulated data under different probability distribu-
tions. Finally, we also compare the CIVE with several clas-
sical single-set BSS methods, including the SOBI [11], the
PiCA (periodic component analysis) [16], and the CICA
[13], which are considered to be effective for extracting
quasi-periodic signals. The comparison can demonstrate
the advantages of the proposed method for joint extrac-
tion of quasi-periodic signals from multiple correlated sig-
nal sets. In the following experiments, the target signals
are always mixed linearly with non-target signals.

3.1. Settings of comparison methods

Some implementation details and settings of all the com-
parison methods in the following experiments are intro-
duced here. The IVA-G and IVA-L are implemented with
the open source IVA code 1. Particularly, IVA-G indicates
the IVA based on second-order statistics and the IVA-L is
the IVA based on higher-order statistics.

The IVE here indicates the OGIVEs from [28]. It re-
quires an initial value of the true mixing vector. Suppose

a
[k]
ini = a[k] + eini, where a[k] is the true mixing vector,

and eini is a perturbation vector. The error of the ini-
tial can be measured as ε2 = ||eini||2. In this paper, we
use the symbol IVE-1, IVE-0.1, IVE-0.001 to represent
the IVE with initial error ε as 1.0, 0.1, and 0.001, respec-
tively. The smaller the ε is, the closer the initial value to
its true mixing vector a[k]. More details of the IVE and
ε can be referred to [28]. We use IVE-r to represent the
IVE with the initial value created from a Gaussian ran-
dom number with zero mean and unit variance. The IVE
is implemented with the gradient IVE code 2.

For CIVA, a single reference signal or a single reference
mixing vector needs to be provided to extract the target
SCV. In the experiments, we follow a similar way as IVE
to define the reference mixing vector of CIVA. An initial
mixing vector with error ε = 1.0 is used in CIVA. It should
be mentioned that the reference of mixing vector for CIVA
is difficult to obtain in reality. The implementation of
CIVA is also done with the open source code 1.

In CIVE, there are two hyper-parameters, the lower

bound ξ[k] of the autocorrelation of y
[k]
p , and the weight

α in the cost function. For ξ[k], we set it as an estimated
value based on observed signals. It can also be set as some
constant based on experience. Since the negentropy can
only be used to determine non-Gaussian component, we
set α = 1 for non-Gaussian target SCV, and α = 0 for
Gaussian target SCV.

For single-set separation methods, the settings of SOBI
and PiCA are determined by the observation signals in
each data set. We calculate the autocorrelations of each
observation signal and get its dominant peak position. The
average position t of the dominant peaks is used to deter-
mine the time lag of source signals. In SOBI, the number
of time-delayed covariance matrices to be diagonalized is
set to 1.5t. In PiCA, the peak indexes of the source sig-
nal are set to those ones according to the obtained t. The
CICA [13] only keeps the autocorrelation constraint and
removes the constraint of a reference signal, because the
reference of source signal is supposed to be unknown in
the experiment. The implementation of SOBI refers to
the open source code 3, while the PiCA is done with the
code 4.

1http://mlsp.umbc.edu/resources.html
2https://asap.ite.tul.cz/downloads/ice/
3https://github.com/aludnam/MATLAB/blob/master/sobi/sobi.m
4https://github.com/marianux/ecg-

kit/blob/master/common/PiCA.m
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3.2. Metrics

In the experiments, the evaluation metrics are intro-
duced first focusing on the accuracy of extractions.

First, we take a modification of joint inter-symbol-
interference (joint ISI or ISIJNT)[23, 34, 35], named as
ISIJNT−v, to assess the accuracy of the extractions, where
v indicates vector. As known, we only need a single demix-
ing vector instead of a demixing matrix to extract the tar-
get signal for each data set. Accordingly, the definition of
ISIJNT−v is as below

ISIJNT−v ,
1

N
(

N∑
n=1

(
f̃n

maxn{f̃n}
− 1)), (22)

where N is the total number of signals in one data set,

f̃n =
∑K
k=1

∣∣∣f [k]n

∣∣∣, and f
[k]
n is the nth element of the vector

f [k] with f [k] = (w
[k]
p )TA[k]. Since f [k] = (w

[k]
p )TA[k] is

ideally equivalent to the product of a nonzero scalar and
a row of IK×K , it means (1−N)/N ≤ ISIJNT−v ≤ 0 and
(1−N)/N implying exact extraction.

Besides the metric of ISIJNT−v, we also use the cor-
relation coefficient between the estimates and the target
source signals as another assessment metric of accuracy.
In detail, we use the average correlation coefficient

r =
1

K

K∑
k=1

r[k], (23)

where r[k], 1 ≤ k ≤ K is the correlation coefficient of the
kth target source signal. We clarify that the letter r in this
section only denotes the correlation coefficient instead of
the autocorrelation coefficient in the last section.

3.3. Experimental results of simulated data

To comprehensively evaluate the performance of the
proposed algorithm under different probability distribu-
tions, we construct six different types of simulated data
as demonstrated in Table 1. Specifically, we consider
three types of target source signals, following Gaussian,
Laplacian and uniform distributions, respectively, and two
types of non-target source signals, which obey Gaussian
and Laplacian distributions, respectively. The six types
of observed signals are labelled as A1, A2, B1, B2, C1
and C2, respectively, where the capital letter indicate the
type of target source signal and the digit represents the
type of non-target signal. For example, A2 means the ob-
served data set is composed by linear mixtures of target
source with Gaussian distribution and non-target signals
with Laplacian distribution.

Table 1: Six types of simulated data.

Non-target
Target

Gaussian Laplacian Uniform

Gaussian A1 B1 C1
Laplacian A2 B2 C2

3.3.1. Generation of simulated data

With reference to the data generation method in [22], we
generate quasi-periodic SCVs from periodic signals with
varying periodicity. Fig. 1 show three examples of quasi-
periodic signals with different probability distributions.
The simulated data are pre-whitened for all methods.
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Figure 1: Quasi-periodic signals with different probability distribu-
tions. (a) shows a Gaussian quasi-periodic signal with a kurtosis of
2.98. (b) shows a Laplacian quasi-periodic signal with a kurtosis of
6.61. (c) shows a uniform quasi-periodic signal with a kurtosis of
1.85.

For target SCV following Gaussian distributions, we first
generate K quasi-periodic signal θ(·) by

θ(m) =
√
u(m)v(m), 1 ≤ m ≤M, (24)

where u(·) is a signal following an exponential distribution,
v(·) is a periodic signal with a random periodicity. Then,
we get the Gaussian target SCV sp,g by mixing the K
quasi-periodic signals θ(m) [22].

For target SCV following Laplacian distributions, we get
the quasi-periodic target SCV sp,l with a similar way as
[22],

sp,l(m) =
√
u(m)Γ

1
2 θ(m), 1 ≤ m ≤M (25)

where θ(·) is a vector formed by K quasi-periodic signals,
and Γ is a randomly generated covariance matrix.

Similarly, for target SCV following uniform distribu-
tions, we get the target SCV sp,u as

sp,u(m) =
√
|v(m)|Γ 1

2 z(m), 1 ≤ m ≤M (26)

where z(·) is a vector formed by K different periodic sig-
nals.

For non-target SCVs, we generate the multivariate
Gaussian ones through mixing K random Gaussian sig-
nals, while multivariate Laplacian ones are constructed by

sn,l(m) =
√
u(m)Γ

1
2 g(m), 1 ≤ m ≤M (27)

where g(·) is a vector formed by K random Gaussian sig-
nals.
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Figure 2: Histograms of r statistics for results in Table 2 using simulated data.

Table 2: The average r and average ISIJNT−v for the results of
100 independent trials on simulated data with N = 10,K = 10 and
M = 1000.

Metrics ISIJNT−v r ISIJNT−v r ISIJNT−v r
Data A1 A2 B1

CIVE-G -0.86 0.99 -0.89 1.00 -0.88 0.99
CIVE-L -0.80 0.91 -0.78 0.86 -0.88 1.00
IVA-G -0.86 0.97 -0.88 0.98 -0.76 0.60
IVA-L -0.28 0.27 -0.78 0.56 -0.79 0.85
CIVA -0.88 1.00 -0.88 0.98 -0.87 0.84
IVE-r -0.39 0.27 -0.52 0.09 -0.57 0.67
IVE-1 -0.60 0.51 -0.57 0.20 -0.81 0.96

IVE-0.1 -0.82 0.73 -0.76 0.40 -0.88 0.99
IVE-0.001 -0.82 0.72 -0.76 0.40 -0.88 1.00

Data B2 C1 C2
CIVE-G -0.87 0.99 -0.89 1.00 -0.89 1.00
CIVE-L -0.89 1.00 -0.87 0.99 -0.87 0.99
IVA-G -0.54 0.49 -0.78 0.60 -0.78 0.64
IVA-L -0.83 0.74 -0.31 0.30 -0.31 0.79
CIVA -0.87 0.82 -0.84 0.76 -0.85 0.71
IVE-r -0.54 0.18 -0.40 0.23 -0.40 0.09
IVE-1 -0.81 0.97 -0.60 0.53 -0.60 0.19

IVE-0.1 -0.88 0.99 -0.85 0.91 -0.85 0.84
IVE-0.001 -0.88 1.00 -0.86 0.95 -0.86 0.88

3.3.2. Accuracy of comparison methods

The number of total sources N , the length of source
signal M and the number of data sets K are taken as
N = 10,M = 1000, and K = 10, respectively. The av-
erage results of all methods after 100 independent trials
are shown in Table 2. Since the number of sources to be
demixed in each data set is N = 10, the ideal extraction
indicates that the correlation coefficient r is close 1.0 and
ISIJNT−v = −0.90. The histograms of r statistics are
shown in Fig. 2. More r concentrating to 1.0 indicates
better quality of signal extraction. Next, we analyze the

performance of each method in detail.

1) IVA: As known, the IVA separates all SCVs. In the
experiment, we select the target demixing vector of each
data set as the one closest to the real one from the full
demixing matrix. It should be noted that the selection
of required target is not trivial in real JBSS applications
since the reference is usually absent.

IVA-G is valid for separating both Gaussian and non-
Gaussian source signals which have second-order correla-
tions within the same SCV [20]. It can be seen from Table
2 that the extractions of IVA-G are accurate in A1 and A2
because the target source signals are second-order corre-
lated. In comparison, the performance of IVA-G is degen-
erated in cases of B1, B2, C1 and C2 since the required
second-order correlations in IVA-G may not be fully sat-
isfied in these cases.

The IVA-L can separate SCVs with multivariate
Laplacian distribution and higher-order dependency [22].
Therefore, the estimations of the target SCV by IVA-L in
B1 and B2 are more accurate than that in A1, A2, C1
and C2. However, we also observe that the performance
of IVA-L is not always satisfied even for the cases of B1
and B2. This is consistent with the observation described
in [22]. Although the target source signals in C1 and C2
are higher-order dependent, the performance of IVA-L is
degraded since the probability distribution of targets are
far from Laplacian.

2) IVE: As known, IVE is an extraction method of non-
Gaussian target SCV. From Table 2 and Fig. 2, we can
see that the IVE achieves better performance in B1 and
C1 than that in A1. For example, the metric r of IVE-0.1
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in B1, C1 and A1 is 0.99, 0.92, and 0.73, respectively. The
performance of IVE will improve as the signal becomes
more non-Gaussian, which is consistent to its assumption
[28].

From the Table 2, we also observe that the initial value
of the demixing vector has a clear influence on the perfor-
mance of IVE. The closer the initial value is to its refer-
ence, the more accurate the extractions are. Particularly,
the IVE-r results with random initial value are totally dis-
torted.

3) CIVA: As can be seen from Table 2, the performance
of CIVA is similar to that of IVA-G. Both of the two meth-
ods achieve good performance for A1 and A2. Although
the separation of CIVA for B1, B2, C1, and C2 is slightly
better than IVA-G, it is still not accurate enough. This is
because the objective function of CIVA is similar as that
of IVA, which limits the separation performance.

4) CIVE: The CIVE-G indicates the method of CIVE
with multivariate Gaussian assumption to determine the
quasi-periodic SCV with second-order correlations. As can
be observed in Table 2, the CIVE-G achieves amazing per-
formance in the accuracy of extractions. In detail, the ne-
gentropy loss is ignored for cases of A1 and A2 and the
CIVE-G still gets the best results. The use of mutual
information and the autocorrelation constraint plays an
important role for CIVE-G to extract the target signals in
cases of A1 an A2 with strong second-order correlations
and quasi-periodicity. The results of CIVE-G in B1, B2,
C1 and C2, of which the target signals are non-Gaussian,
are still satisfied. We guess the reason that the negen-
tropy and the autocorrelation constraint still play a major
role to separate the target SCV from other SCVs through
enforcing the independence and quasi-periodicity.

The CIVE-L is the CIVE method with assumption of
multivariate Laplacian distribution. The CIVE-L achieves
the best performance in B1 and B2 when the problem as-
sumption matches well with the method. In comparison,
the extractions of CIVE-L in A1 and A2 are not as accu-
rate as CIVE-G due to the mismatch of signal distribu-
tion. We also notice that the CIVE-L still performs well
for SCV with uniform distributions in C1 and C2. Al-
though the probability distributions do not match with
the assumption, the high-order dependency of generated
target signals in C1 and C2 improve the results of CIVE-
L. This means that the relevant items in the loss function
have important effects on the results, and the influencing
factors are more complex.

3.3.3. Convergence and stability of CIVE

We evaluate the converge curves of different methods as
shown in Fig. 3. Considering the convergence speeds of
all methods are different, we only show the average results
of the first 50 iterations. We observe that the CIVE-G
has overall the best convergence among all the methods.
In comparison, the CIVE-L performs better in cases of B1
and B2. The IVA-G converges quickly and accurately in
A1 and A2. But it does not perform well in B1, B2, C1,
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Figure 3: The converge curves of different methods using simulated
data: the first 50 iterations.

and C2. The IVA-L converges slowly for all cases and it
finally converges to the actual solution in B1 and B2 after
around 1000 iterations. The converge curves of CIVA are
similar as that of IVA-G, except for the B2 and C2, where
the CIVA converges much faster than the IVA-G. We guess
that the extra constraint in CIVA accelerates the conver-
gence in these two cases. The IVE with different starting
points fails to converge in the first 50 iterations. It even-
tually converges to a good point for B1, B2, C1, and C2
types of observation signals in the actual experiments af-
ter thousands of iterations. The above convergence results
are consistent with the experimental results in Table 2.

In previous experiments, we take fixed values for the
number of samples M , the number of SCVs N and the
numbers of data sets K. In order to verify the stability of
CIVE, we further run the experiment using different N,M
and K. Since the results of other cases are similar, we only
demonstrate the stability analysis with the case of C2. To
save time, the extractions are independently implemented
with 10 trials. Moreover, the results of IVE are taken from
IVE-0.001 because the results of IVE-0.1, IVE-1 and IVE-r
are worse.
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Figure 4: Mean correlation coefficients r of 10 independent trials
versus the number of samples M with N = 10 and K = 10 in C2.

Fig. 4 shows the correlation coefficients r of different
methods versus the number of samples M . We can see
that M has little impact on the performance of CIVE-G
and CIVE-L. Only the accuracy of the CIVE-L method
slightly drops when M is extremely small. Fig. 5 (a) and
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(b) show the performance of all methods versus different
number K of data sets. Particularly, Fig. 5 (a) and (b) are
obtained using N = 4 and N = 20, respectively. We can
see that the CIVE-G and CIVE-L are quite stable along
with different N and K. In contrast, we observe that the
extractions of IVA-L in Fig. 5 (a) with N = 4 are more
accurate than that in Fig. 5 (b) with N = 20 . This is
consistent to the conclusion in [22] that the IVA-L is easy
to converge to a local minimum if the number N of SCVs
is big.

3.4. Experimental results of semi-simulated data

Considering that the real quasi-periodic signals may
have more complicated distributions than the above sim-
ulated data, we also evaluate the performance of the pro-
posed method with simi-simulated data.
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Figure 5: Mean correlation coefficients r of results from 10 inde-
pendent trials versus different number K of data sets in C2 with
M = 1000. (a)N = 4 and (b)N = 20.

3.4.1. Generation of semi-simulated data

Since the photoplethysmography (PPG) signal records
the heartbeat information, it can be considered as a
real quasi-periodic signal. In this paper, we randomly
select PPG signals from three subjects in the public
UBFC-RPPG dataset [36] to generate the semi-simulated
data. The PPG signals were recorded by Contec Medical
CMS50E at a sampling rate of 60 Hz. They are linearly
mixed with simulated non-target Gaussian or Laplacian
source signals to construct semi-simulated data sets.

Fig. 6 demonstrates some quasi-periodic SCVs com-
posed by PPG signals from three different subjects and
their corresponding distributions. We can observe that
the PPG signals here can be roughly considered as sub-
Gaussian signals. However, their distributions are not as
symmetric as the ideal sub-Gaussian distribution.

We build total six types of semi-simulated data sets as
summarized in Table 3. In detail, the capital letter (D, E,
and F) indicates the subject where the PPG signal is mea-
sured, and the digit (1 for Gaussian and 2 for Laplacian)
represents the type of non-target source signals.

3.4.2. Accuracy of comparison methods

We test all the comparison methods on the semi-
simulated data sets with N = 10,K = 10 and M = 400.
We independently run every method for 100 trials on each
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Figure 6: The quasi-periodic SCVs composed by PPG signals from
three different subjects and their corresponding distributions.

Table 3: Six types of semi-simulated PPG data sets

Non-target
Target

Subject D Subject E Subject F

Gaussian D1 E1 F1
Non-Gaussian D2 E2 F2

type of semi-simulated data. The experiment results are
summarized in Table 4 and the corresponding histograms
of r statistics are given in Fig. 7. We can see from Table 4
that the performance of CIVE-G is in general better than
the other ones. In comparison, the IVA-L does not per-
form well since the PPG signals are sub-Gaussian, which
is not consistent with the assumption of IVA-L. The IVA-
G achieves good results for cases of D1, D2, E1 and E2,
while its performance slightly drops for cases of F1 and
F2. We guess that the small differences in probability dis-
tributions may have caused this result. We also observe
that the CIVA is superior in comparison with IVA, which
performs similarly as the CIVE for E2 and F2. Surpris-
ingly, the results of IVE are distorted for the sub-Gaussian
PPG signals even with good initials. The reason may be
that the PPG signal is still too close to the Gaussian ones
for IVE method.

To show more details, Fig. 8 lists the results from one
of the 100 trials in E1. For ease of presentation, Fig. 8
(a) and (b) show only two estimated PPG signals within
the same SCV by different methods. The correlation coef-
ficient r for the results in Fig. 8 (a) is 1.00 for CIVE-
G, and 0.99 for IVA-G and CIVA, respectively. Simi-
larly, the r in Fig. 8 (b) is 1.00 for CIVE-G, and 0.99
for IVA-G and CIVA, respectively. The experimental re-
sults on semi-simulated data sets indicate that the pro-
posed CIVE method overall outperforms the comparison
methods, which verifies the ability of CIVE for extracting
real quasi-periodic signals from multiple data sets.
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Figure 7: Histograms of r statistics for results in Table 4 using semi-simulated data.

Table 4: The average r and average ISIJNT−v for the results from
100 independent trials on semi-simulated PPG data sets.

Metrics ISIJNT−v r ISIJNT−v r ISIJNT−v r
Data D1 D2 E1

CIVE-G -0.85 0.97 -0.85 0.98 -0.86 0.99
CIVE-L -0.82 0.91 -0.82 0.91 -0.82 0.91
IVA-G -0.84 0.97 -0.84 0.96 -0.86 0.98
IVA-L -0.56 0.26 -0.82 0.49 -0.56 0.27
CIVA -0.82 0.95 -0.86 0.98 -0.84 0.98
IVE-r -0.56 0.23 -0.74 0.12 -0.56 0.21
IVE-1 -0.57 0.36 -0.73 0.22 -0.57 0.36

IVE-0.1 -0.62 0.49 -0.74 0.34 -0.61 0.45
IVE-0.001 -0.61 0.50 -0.74 0.33 -0.61 0.45

Data E2 F1 F2
CIVE-G -0.86 0.99 -0.87 0.99 -0.87 0.99
CIVE-L -0.81 0.91 -0.85 0.93 -0.85 0.94
IVA-G -0.86 0.98 -0.84 0.91 -0.83 0.89
IVA-L -0.82 0.50 -0.56 0.27 -0.82 0.58
CIVA -0.86 0.99 -0.85 0.96 -0.87 0.99
IVE-r -0.73 0.13 -0.56 0.22 -0.74 0.12
IVE-1 -0.74 0.22 -0.59 0.39 -0.73 0.23

IVE-0.1 -0.75 0.34 -0.64 0.53 -0.74 0.34
IVE-0.001 -0.74 0.35 -0.63 0.52 -0.74 0.33

3.5. Comparison with classical single-set BSS methods

To demonstrate the benefit of CIVE for joint SCV ex-
traction in comparison with classical single-set BSS meth-
ods, we also compare it with the SOBI [11], the PiCA [16]
and the CICA [13], which are considered to be effective for
extracting quasi-periodic signals for a single set.

3.5.1. Generation of data

Since there is only a single quasi-periodic signal in each
data set in the previous experiments, it is difficult to fully
compare the performance of CIVE with the above single-
set separation methods. Accordingly, we generate data

set here with all sources as quasi-periodic signals. Since
the single-set separation method has no explicit require-
ment for the distribution, for simplicity, we only consider
the case of A2 in Table 1. Namely, the target SCV is
composed of dependent Gaussian quasi-periodic signals,
while the non-target signals are independent Laplacian-
distributed quasi-periodic signals. In order to make the
data more realistic, we also add Gaussian white noise to
all the observation signals.

In order to verify the robustness of each method against
noise, the signal-to-noise ratio (SNR) of observation sig-
nals varies from 15 dB to 40 dB. Meanwhile, considering
the competitive performance of CIVA in the above exper-
iments, we also add it to the test as a reference of typical
joint separation method.

3.5.2. Accuracy of comparison methods

Table 5: The average r and average ISIJNT−v for the results from
100 independent trials on simulated data at different SNRs.

Metrics ISIJNT−v r ISIJNT−v r ISIJNT−v r
SNR (dB) 15 20 25
CIVE-G -0.71 0.59 -0.76 0.75 -0.77 0.84

CIVA -0.65 0.30 -0.75 0.64 -0.76 0.73
SOBI -0.73 0.53 -0.74 0.69 -0.73 0.79
PiCA -0.60 0.20 -0.62 0.25 -0.64 0.37
CICA -0.73 0.10 -0.76 0.08 -0.73 0.07

SNR (dB) 30 35 40
CIVE-G -0.76 0.90 -0.72 0.94 -0.69 0.96

CIVA -0.75 0.81 -0.72 0.86 -0.68 0.91
SOBI -0.72 0.87 -0.69 0.92 -0.66 0.95
PiCA -0.64 0.44 -0.62 0.51 -0.61 0.56
CICA -0.75 0.06 -0.57 0.05 -0.68 0.04

From Table 5, we observe that the CIVE-G achieves
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Figure 8: Extraction results for semi-simulated PPG data sets in a single trial. (a) and (b) represent the estimations of the first and second
target PPG signals within the same SCV by different methods, respectively.

overall the best performance compared to other methods
at different SNRs. In detail, the CIVA and the SOBI get
similar performance, which outperform the other two com-
parison methods. Since the source signals in each set are
all quasi-periodic, it causes a great interference to the ex-
traction and selection of the target pseudo-periodic signal
in single-set separation methods. As known, similar spec-
tral densities appearing in the mixed source signals may
restrict the performance of SOBI [37]. Meanwhile, the
quality of the input peak indexes severely limits the per-
formance of PiCA, especially when the SNR is low. The
CICA performs the worst, of which the correlation coeffi-
cient r is 0.10 and the ISIJNT−v is -0.73 when SNR is 15
dB. This indicates that the CICA can hardly distinguish
the target signal from non-target ones which are also quasi-
periodic. Finally, we need to declare that the results of the
above single-set methods are the best ones calculated with
all separated signals. In practice, the selection of the target
signal is also a well-known issue for single-set separation
methods if the reference is lack. In contrast, the proposed
method can uniquely determine the target quasi-periodic
SCV using the correlation of the target signals among each
set.

In summary, the above results verify the effectiveness of
the proposed CIVE methods to extract quasi-periodic SCV
signals with different probability distributions and noise
levels. In addition to these experimental results, we have
also verified that the CIVE is efficient to extract SCVs of
different periods, and it also performs well in real rPPG
applications. Due to the limitation of space, we will not
show all the results in this paper. Finally, although the

CIVE methods outperform the other ones in terms of both
accuracy and convergence speed, we should also note that
the calculation of the autocorrelation constraint is still a
bottleneck of the entire method, which will slow down the
overall calculation time of the algorithm. It still needs to
speed up the calculation of the autocorrelation constraint
in our future research.

4. Conclusion

In this paper, we have introduced the constrained in-
dependent vector extraction method to determine quasi-
periodic source signals that are independent from other
mixed signals and dependent across multiple data sets.
The cost function is composed of negentropy and mutual
information together with an autocorrelation constraint to
uniquely extract the target quasi-periodic SCV. The CIVE
method has been tested to extract the target SCV from
both simulated and semi-simulated data sets. Experimen-
tal results have verified that the proposed method outper-
forms the comparison methods in terms of both accuracy
and convergence speed. Besides, the CIVE method does
not require initial value and it works well for source sig-
nals under diverse distributions. Therefore, the proposed
approach can be reliably used to extract quasi-periodic
signals from multiple data sets.
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