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Abstract—Recently, deep neural networks (DNNs) have
been applied to emotion recognition tasks based on
electroencephalography (EEG), and have achieved better
performance than traditional algorithms. However, DNNs
still have the disadvantages of too many hyperparameters
and lots of training data. To overcome these shortcomings,
in this article, we propose a method for multi-channel
EEG-based emotion recognition using deep forest. First,
we consider the effect of baseline signal to preprocess the
raw artifact-eliminated EEG signal with baseline removal.
Secondly, we construct 2D frame sequences by taking
the spatial position relationship across channels into
account. Finally, 2D frame sequences are input into the
classification model constructed by deep forest that can
mine the spatial and temporal information of EEG signals to
classify EEG emotions. The proposed method can eliminate
the need for feature extraction in traditional methods and
the classification model is insensitive to hyperparameter
settings, which greatly reduce the complexity of emotion
recognition. To verify the feasibility of the proposed model,
experiments were conducted on two public DEAP and
DREAMER databases. On the DEAP database, the average
accuracies reach to 97.69% and 97.53% for valence and
arousal, respectively; on the DREAMER database, the
average accuracies reach to 89.03%, 90.41%, and 89.89%
for valence, arousal and dominance, respectively. These
results show that the proposed method exhibits higher
accuracy than the state-of-art methods.

Index Terms—Deep neural networks (DNNs), emotion
recognition, multi-channel EEG, deep forest, spatio-
temporal information.
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I. INTRODUCTION

EMOTION is a complex psychological and physiological
state [1], which affects people’s cognition, behavior and

interpersonal communication. The study of human emotions is
a subject that has been under way for nearly a century and a half.
With the increasing demand for human-computer interaction
(HCI), whether the machine can correctly analyze the user’s
emotional state has become the key to interactive experience.
Judging the human emotions must rely on long-term experience
and personal thinking, which is a very complicated thing for
humans, not to mention machines. Therefore, automatic emotion
recognition is a challenging task that has attracted numerous
attention [2]–[5].

Over the years, there have been several research directions on
emotion recognition, including emotion recognition based on
behavioral responses (such as facial expressions, vocal intona-
tions and body postures) and emotion recognition based on phys-
iological signals. Compared with behavioral responses, physio-
logical signals can reflect dynamic changes in the central nervous
system, which are difficult to hide and closer to people’s real
emotions [6]. Physiological signals such as electrooculogram
(EOG), electrocardiogram (ECG) and electromyogram (EMG)
are usually indirect responses caused by emotion with low recog-
nition accuracy, while electroencephalography (EEG) signals
have good time resolution [7], which can provide a direct and
comprehensive means for emotion recognition with higher clas-
sification accuracy [8], [9]. Therefore, the EEG-based method
is irreplaceable in the field of emotion recognition [10], [11].

Currently, there are two emotional models to construct emo-
tional space, discrete model and dimensional model. According
to the discrete model, the emotional space consists of a limited
number of basic discrete emotions, such as happiness, sadness,
surprise, fear, anger and disgust. The dimensional model defines
emotions as points in a dimensional space. The more similar
emotions are, the closer their coordinates are in the dimen-
sional space. The researchers proposed a dimensional model
of two or three dimensions: valence-arousal, valence-arousal-
dominance [12], where the two-dimensional model is the most
widely used, illustrated in Fig. 1. Valence refers to the positive
degree of emotion, arousal refers to the intensity of emotion,
and dominance refers to the degree of subjective control of the
individual’s emotional state. Considering that the dimensional
model can show more feelings and is closer to human perception
of feelings [13], we adopt the dimensional model in this study.
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Fig. 1. The 2D valence-arousal model of emotions.

Two important points in the emotion recognition task are:
(1) extraction of EEG features, and (2) construction of emo-
tion classifiers [14]. Most traditional methods for extracting
EEG features only focus on the information in time domain
or/and frequency domain. Time-domain features are extracted
by capturing the changes of time series with strong intuitiveness
and clear physical meaning, including event related potentials
(ERP) [15], statistical features (power, mean, standard deviation
and the first difference) [16]–[19], Hjorth features [20], higher
order crossings (HOC) [21], etc. The most commonly used
frequency-domain features are power characteristics from differ-
ent frequency bands. Usually, fast Fourier transform (FFT) [22]
is utilized to transform the time-domain EEG signals into the
frequency-domain, and Welch method is used to estimate corre-
sponding power spectral density (PSD) [23]. Duan et al. [24]
proposed the differential entropy (DE) to represent the state
related to emotions, which proved to be more suitable for
emotional classification than PSD [25]. For the construction of
classifiers, traditional machine learning algorithms, typically as
decision tree (DT), support vector machine (SVM), k-nearest
neighbor (KNN) and multi-layer perceptron (MLP), are widely
used and achieve good results. However, the generalization
ability of these traditional methods is limited, which challenges
the emotion recognition based on more complex EEG signals.
In recent years, deep neural networks (DNNs) have developed
rapidly and have been successfully adopted in many fields,
(i.e.), computer vision, speech recognition, natural language
processing, and biomedical signal processing. Many researchers
have also successfully introduced them into the field of emotion
recognition because they can automatically learn robust and
abstract feature representations, achieving an improved perfor-
mance than traditional algorithms. Alhagry et al. [26] proposed
an end-to-end DNN-based method for identifying emotions from
raw EEG signals. Long short-term memory-recurrent neural
network (LSTM-RNN) was used to learn features from EEG
signals, then the dense layer was used for classification. The
recognition accuracies on the DEAP database were 85.45% and
85.65% for valence and arousal, respectively. Salama et al. [27]

extracted 3D data representation from multi-channel EEG sig-
nals and send it to the proposed 3D convolutional neural network
(3D-CNN) model for spatio-temporal feature extraction. They
achieved the recognition accuracies of 87.44% and 88.49%
for valence and arousal on DEAP database, respectively. Song
et al. [28] proposed a novel dynamic graph convolutional neu-
ral network (DGCNN) that can dynamically learn the internal
relationship between different EEG channels represented by an
adjacency matrix to classify EEG emotions, and the accuracies
were 86.23%, 84.54% and 85.02% for valence, arousal and
dominance on DREAMER database, respectively.

Although DNNs show prominent advantages in EEG-based
emotion recognition task, they still have some shortcomings.
First, DNNs have lots of hyperparameters, and their learning
ability depends heavily on the careful parameter adjustment.
Second, DNNs require massive training data. However, in the
field of EEG-based emotion recognition, large-scale labeled
EEG databases are limited [29]. To solve the above problems, we
adopt a deep forest model named multi-Grained Cascade Forest,
termed as gcForest, and tailor it to multi-channel EEG-based
emotion recognition task. The gcForest is a deep model proposed
by Zhou et al. in 2017 [30], which has three similar char-
acteristics as the DNNs: layer-by-layer processing, in-model
feature transformation and sufficient model complexity. The
gcForest algorithm has fewer hyperparameters and does not
require backpropagation, as well as is robust to hyperparameter
settings. In addition, its model complexity is data-dependent. It
can terminate training adaptively, which makes it suitable for
training with different sizes of data, not limited to large-scale
one. For the field of EEG-based emotion recognition, where
large-scale tag databases are limited due to high tagging cost, gc-
Forest shows the advantage of better control of the training cost.
Moreover, gcForest has been successfully utilized in the tasks
of hyperspectral image classification [31], [32], metagenomic
data classification [33], cancer subtypes classification [34], and
protein self-interaction prediction [35].

In this paper, we propose a method for emotion recognition
from multi-channel EEG via deep forest. First, we perform
a pre-processing of baseline removal on the original artifact-
eliminated EEG signals. Second, in order to utilize both the
spatial relationship across channels and time information of the
EEG signals, we map the pre-processed data of all channels
at each moment to a 2D frame according to the electrode
distribution, thereby obtaining a 2D frame sequence for each
sample. Third, the scanning module in gcForest scans each frame
in the sequence to obtain information across channels, and then
we use the features obtained by all the frames. Finally, the feature
vectors with spatial and temporal information are sent to cascade
forest for classification. The contributions of this paper can be
summarized as follows:

1) We tailor gcForest to multi-channel EEG-based emo-
tional recognition according to the characteristics of
multi-channel EEG, and a classification model that can
fully use the spatial and temporal information of EEG
signals is constructed.

2) Our method is data-driven, and the classification model
does not rely on careful parameter adjustment, reducing
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Fig. 2. Flowchart of the proposed method.

the complexity of EEG emotion recognition. Besides,
the model complexity of gcForest can be determined
automatically for different size of training data, making
it even suitable for small-scale training data.

3) Our method and seven other typical methods are validated
on the DEAP and DREAMER databases. Our proposed
method achieves the best performance except that of the
valence dimension on DREAMER database, demonstrat-
ing the effectiveness of our method.

The rest of this paper is organized as follows: Section II
introduces the formulation of the proposed method. Section III
introduces the databsets used in the experiment, experimental
setup and experimental results. Section IV gives profond dis-
cussions, and Section V concludes our study.

II. METHODS

In this section, we will introduce the proposed method in
detail, shown in Fig. 2. First, we introduce the preprocess-
ing method of EEG data and the construction process of 2D
frames. Then, we introduce the structure of two modules in
gcForest: scanning and cascade forest. Finally, we introduce
the specific process of tailoring gcForest to multi-channel EEG
classification.

A. Pre-Processing

Most studies only use experimental signals without taking the
effect of baseline signals (signals in relaxed state) into account.
Since human EEG signals are unstable and susceptible to slight
changes in surrounding environment, EEG signals produced by
the same subject under the same stimulations are generally dif-
ferent. In addition, to a certain extent, the EEG signal produced
by emotional material stimulation is affected by its emotional
state before receiving stimulations. Thereby, the preprocessing
of baseline removal can highlight the effects of stimulated emo-
tions. It has been proved that the final classification results can
be improved when adotping the amplitude difference between
the experimental signal (induced EEG) and the rested EEG [37].
In this study, we divide the baseline signal and the experimental
signal into K segments and I segments with a length of L, re-
spectively.Bk andXi represent the k-th baseline signal segment
and the i-th experimental signal segment, respectively. Then we
average all baseline signal segments and subtract this average
value from each experimental signal segment. This step can be
formulated as follow:

B =

∑K
k=1 Bk

K
, (1)

Fig. 3. The mapping of equivalence matrices according to the Interna-
tional 10–20 system [36].

X ′
i = Xi −B, (2)

where B denotes the average of all baseline signal segments; X ′
i

denotes the i-th segment of final emotional state data.

B. The Construction of 2D Frame Sequences

The International 10-20 System is a recognized method for
describing the placement of scalp electrodes during EEG ac-
quisition. The “10” and “20” mean that the actual distances
between the adjacent electrodes are either 10% or 20% of the
total front-back or right-left distance of the skull. We generalize
the International 10-20 system together with the test electrodes
used in the DEAP/DREAMER database to form a square matrix
(M ×M ), where M equals to max(P,Q). P is the number
of electrode points included along the horizontal, while Q is
the number of electrode points included along the vertical. The
left side of Fig. 3 is a plain view of the International 10–20
system, where the EEG electrodes circled in red are the test
points used in DEAP database, Fp1, AP2 and so on are the
names of electrodes. Along the horizontal direction, the widest
range of red dots is from T7 to T8 including nine electrodes.
Vertically, the widest range of red dots is from Fp1 to O1 also
including nine electrodes. Thereby,P = Q = 9 in this study and
M is set to 9 for DEAP database. Similarly, M is also set to 9
for DREAMER database. Zeros represent channels that are not
used in DEAP/DREAMER database.

The process of constructing 2D frame sequences is shown
in Fig. 4. For a certain time index t, the EEG data from all
channels is a 1D data vector vt = [s1t , s

2
t , . . . , s

N
t ]T , where snt

is the pre-processed data for the n-th electrode channel and the
acquisition system contains a total ofN channels. For the DEAP
and DREAMER databases, N is 32 and 14, respectively. During
the time period [t, t+ L− 1], there are L 1D data vectors, and
each of them contains N elements from all channels. For each
1D data vector, Z-score normalization [38] is used to normalize
all elements by the following equation:

snt
′ =

snt − μvt

σvt

, (3)

where snt denotes an element from one channel of the vector,μvt

denotes the mean of all elements, and σvt
denotes the standard

deviation of these elements.
In the EEG electrode map, each electrode is physically ad-

jacent to multiple electrodes. In order to maintain spatial infor-
mation between multiple adjacent channels, an 1D data vector
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Fig. 4. The construction of 2D frame sequences.

is transformed into a 2D data frame according to the electrode
map. The corresponding 2D data frame ft of the 1D data vector
vt

′ = [s1t
′
, s2t

′
, . . . , sNt

′
]T at time index t is denoted as follows:

ft =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 s1t
′

0 s17t
′

0 0 0

0 0 0 s2t
′

0 s18t
′

0 0 0

s4t
′

0 s3t
′

0 s19t
′

0 s20t
′

0 s21t
′

0 s5t
′

0 s6t
′

0 s23t
′

0 s22t
′

0

s8t
′

0 s7t
′

0 s24t
′

0 s25t
′

0 s26t
′

0 s9t
′

0 s10t
′

0 s28t
′

0 s27t
′

0

s12t
′
0 s11t

′
0 s16t

′
0 s29t

′
0 s30t

′

0 0 0 s13t
′

0 s31t
′

0 0 0

0 0 0 s14t
′
s15t

′
s32t

′
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

By this transformation, for the time period [t, t+ L− 1], the
normalized 1D vector sequence [vt

′, vt+1
′, . . ., vt+L−1

′] is
converted into a 2D frame sequence [ft, ft+1, . . ., ft+L−1]
containing L frames.

C. Cascade Forest Structure

Inspired by the idea of layer-by-layer procedure of deep neural
networks, cascade forest adopts a cascade structure of level-
by-level procedure. Each level of the cascade forest receives
feature information processed by the previous level and outputs
its feature information to the next level. Each level is an ensemble
of decision tree forests, and deep forest is an ensemble of some
levels. To encourage diversity that is critical to the ensemble
construction, each level contains two different types of forests:
random forests [39] and completely-random forests [40]. The
difference between a completely-random forest and a random
forest lies in the strategy of selecting the splitted features of
the tree. The completely-random forest selects one feature for
split at each node randomly, while a random forest selects d
features as candidates (d is the number of input features) and
selects the splitting feature with the best gini value. Each level
contains m forests, each forest contains p decision trees, and
each tree grows until each leaf node contains only instances of
the same class or no more than q instances. Given an instance,
the leaf nodes to which it belongs may contain training samples
of the same class or different classes. Each forest can generate an
estimation of the class distribution by calculating the percentage
of different classes of training samples in the leaf node into which
the instance falls, and then obtaining the average of all trees in
the same forest. The estimated class distribution forms a class
vector, and the class vectors of all forest outputs in each level

Fig. 5. Cascade forest structure (Suppose to predict two classes of
emotions).

Fig. 6. Scanning structure (Suppose to predict two classes of
emotions).

will be concatenated and then joined to the original data as the
next level input. As shown in the Fig. 5, assuming that each
level contains two completely random forests and two random
forests, for binary classification, each forest in each level will
generate a two-dimensional class vector. Therefore, each level
will generate 8 enhanced features.

D. Scanning Structure

The scanning module is effective to process data with spatial
relationships, so it is very suitable for processing multi-channel
EEG data. As shown in the Fig. 6, a sliding window is used
to scan the original input, then feature vectors are generated.
Each feature vector will be assigned the same label as the
original training sample, and then be regarded as an instance. All
instances will be used to train a complete random forest, which
generates class vectors. These class vectors are concatenated as
the transformed features. For instance, assuming that the size
of the original input is 9 × 9, the size of the sliding window
is 3 × 3, and the sliding step is 1. For binary classification,
each forest generates 49 two-dimensional class vectors, that is, a
196-dimensional transformed feature vector is finally generated.
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Fig. 7. GcForest for multi-channel EEG signals classification.

E. Multi-Channel EEG Signals Classification

The specific process of gcForest for emotion recognition from
multi-channel EEG is described as below, shown in Fig. 7.
According to the characteristic that the scanning module can
process spatial information, we first send the EEG data into
the scanning module to extract the spatial information across
different EEG channels, and then feed the output of the scanning
module into the cascade forest for binary classification.

According to aforementioned description, we transform each
sample into a 2D frame sequence so that the size of the input with
R emotions for scanning module is S × L×M ×M , where S
represents the number of samples, L represents the number of
frames contained in each frame sequence, and M ×M repre-
sents the size of one frame. The size of the sliding window is
w × w, the sliding length is l, and the sliding window divides
each frame into ((M − w)/l + 1) ((M − w)/l + 1) sub-blocks.
Each sub-block is flattened into a vector and sent to a com-
pletely random forest and a random forest, then a ((M − w)/l +
1) ((M − w)/l + 1)× 2×R-dimensional transformed feature
vector is generated. We concatenate these feature vectors gen-
erated from the L frames together as the final feature vector of
this EEG segment, and then it will be sent to the cascade forest.

For each sample, m R-dimensional class vectors are gener-
ated by each level of cascaded forest. Them vectors are averaged
to obtain aR-dimensional estimated distribution, and the sample
will be classified as the one with the largest value. A validation
set is utilized to verify the accuracy of the model with the
current number of levels. If the current accuracy is higher than
before, the mR-dimensional class vectors will be concatenated
as a m×R-dimensional enhanced feature with the transformed
feature generated by scanning module, and then become the
input of the next level. The number of layers stops increasing
and the training stops until the accuracy no longer increases.
This is different from DNNs, we don’t need a fixed number
of epochs. This means that each subject’s model is not exactly
the same and each subject’s model can obtain the best result

TABLE I
DATABASE DESCRIPTION

V denotes valence, A denotes arousal, and D denotes dimonance.

already available. Meanwhile, the training cost is effectively
controlled.

III. EXPERIMENTS

In this section, we first introduce the two public databases used
in this study. Then, we explain the relevant experimental settings
in detail. Finally, we present and analyze the experimental results
on DEAP and DREAMER databases, respectively.

A. Databases

To test the performance of our method, we use two pub-
lic databases widely used in EEG-based emotion recognition,
DEAP [41] and DREAMER [42]. Table I shows the form of raw
EEG data that we use in the two databases.

In DEAP database, 32 healthy participants (16 males, 16
females) participated in the experiment. Each participant was
asked to watch 40 one-minute music videos. Their EEG signals
were recorded from 32 electrodes that their positions according
to the International 10-20 system. The sample rate of the raw
EEG signal was 512 Hz. Participants rated the valence, arousal,
dominance and liking on a continuous scale between 1 and 9 after
watching each video. In the pre-processed version, EEG signals
were down-sampled to 128 Hz, and EOG artifacts were removed
with a blind source separation technique such as independent
component analysis (ICA). Data recorded for each participant
consists of 40 segments of EEG data and corresponding labels.
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Each segment of EEG data contains 60 s experimental signals
and 3 s baseline signals in a relaxed state.

In DREAMER database, 32 healthy participants (14 males,
9 females) participated in the experiment. 18 film clips were
shown to every participant and each film clip targets one of
nine emotions: entertainment, excitement, happiness, calmness,
anger, disgust, fear, sadness, and surprise. The length of the
film clips was between 65 to 393 s (M = 199 s). Their EEG
signals were recorded with the sample rate of 128 Hz from
14 electrodes that their positions according to the International
10-20 system, and most eye artifacts were removed with linear
phase FIR filters. Participants rated the valence, arousal and
dominance from 1 to 5 after watching each film. Data recorded
from each participant consists of three parts, 18 experimental
signal segments, 18 baseline signal segments corresponding to
relaxed state and 18 corresponding labels.

B. Experimental Design

Emotional recognition tasks based on EEG can be divided
into subject-dependent and subject-independent ones. In this
paper, we focused on subject-dependent EEG-based emotion
recognition task.

Selection of window length: [43] indicates that the duration
of emotion is about 0.5-4 s, and the experiments in [44] show
that EEG data divided into 1 s segments can obtain the highest
classification accuracy. Thus, we set the window length to 1 s.

Data processing: In DEAP database, for each subject, the raw
EEG data is segmented into 2400 samples with the size of 32 ×
128 using the non-overlapping window. We construct a 2D time
frame sequence for each sample, and eventually 2400 samples
with the size of 128 × 9 × 9 can be obtained for each subject.
In DREAMER database, for each subject, the raw EEG data is
segmented into 3728 samples with the size of 14× 128 using the
same widowing technique. We also construct a 2D time frame
sequence for each sample, and eventually 3728 samples with the
size of 128 × 9 × 9 are obtained for each subject.

Label processing: We label each segment of the signal di-
vided by the sliding window with the same label as the whole
segment of the signal. In DEAP database, we divide the score
of 1-9 into two binary classification problems with a threshold
of 5: high/low arousal and high/low valence (low: ≤ 5, high:
> 5). In DREAMER database, we divide the 1-5 score into three
binary classification problems with a threshold of 3: high/low
arousal, high/low valence, and high/low dominance (low: ≤ 3,
high: > 3).

Parameters settings in gcForest: GcForest has six parame-
ters: m, n, q1, q2, w, and l; m represents the number of forests
that each level contains, n represents the number of trees that
each forest contains, q1 and q2 represent the number of instances
that each tree contains when the leaf node stop growing in
scanning module and cascade forest module respectively,w × w
represents the size of the sliding window of the scanning module,
and l represents the step length of the sliding window. Through
a lot of experiments, we found that a large range of changing of
q1 and q2 has a slight influence on the results, so we set them as
20 and 10, consistent with the default settings. For w × w, the

Fig. 8. Accuracy varies with the number of trees in gcForest on DEAP:
(a) Valence, (b) Arousal.

maximum setable value is 9× 9, which is the same as the size of
a 2D frame fed into scanning module. Usually, the 3× 3 kernel
is widely uesd in CNN. However, in this study, the non-zero
elements in 2D frames constructed by gcForce are sparse. In
order to capture sufficient spatiol information, we set w × w to
6× 6. The default setting for l is 1, and the running time of the
proposed model will decrease with the increase of l. Through
experiments, it is found that when l is 3, the recognition accuracy
is close to that when l is 1. In order to achieve a balance between
information richness and computing resources, we set l to 3. m
and n were determined by the classification results varying with
the change of the corresponding numbers. For DEAP database,
we experimentally set them to 220 and 8, respectively; For
DREAMER database, we experimentally set them to 260 and
24, respectively. The detailed analysis will be released in the
following section.

Division of training/test sets: 10-fold cross-validation [45]
is implemented for both databases.

C. Result on DEAP

For DEAP database, we have verified the proposed method on
valence and arousal dimensions in order to facilitate comparison
with previous work.

For the setting of m and n: the number of trees in each forest
and the number of forests in each level of cascade forest, we
have observed the impact of the number change on the classifica-
tion results through experiments. The classification accuracy on
DEAP database varies with the change of number of trees in each
forest, shown in Fig. 8. When the number of trees in each forest is
small, accuracy increases obviously with the increase of number
of trees; when the number of trees increasesd to 180, the increase
of accuracy becomes relatively gentle; when the number of trees
is large, the accuracy will fluctuate slightly with the increase of
trees. Besides, it can be seen from Fig. 8 that the number change
of trees has a slight influence on the classification accuracy,
and the difference between the maximum and minimum values
on valence and arousal dimensions are only 0.50% and 0.56%,
respectively. The classification accuracy on DEAP database
varies with the change of number of forests in cascade forest
as shown in Fig. 9, and each increase of ‘1’ on the horizontal
axis coordinates means adding a random forest and a completely
random forest. When the horizontal axis increases from 1 to
2, the accuracy increases sharply; after that, as the number of
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Fig. 9. Accuracy varies with the number of forests in gcForest on
DEAP: (a) Valence, (b) Arousal.

TABLE II
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF

DIFFERENT METHODS ON DEAP DATABASE

forests increases, the accuracy slowly increases and tends to
be stable. The difference between the maximum and minimum
values on valence and arousal dimensions are only 0.20% and
0.32%, respectively. To strike a balance between classification
accuracy and computational resources, we set the number of
trees in each forest to 220 for DEAP database, respectively; the
number of forests in each level of cascade forest to 8 (4 random
forests and 4 completely random forests). Thus, recognition
accuracies of our method for valence and arousal dimensions
on DEAP database are 97.69% and 97.53%, respectively.

We compare our method with seven other typical meth-
ods, namely DT [46], SVM [47], MLP [36], Conti-CNN [36],
CNN-RNN [37], CRAM [48], and DGCNN [28]. Conti-CNN
takes 3D EEG cubes as the input, aiming to extract both spa-
tial and frequency information. CNN-RNN is a hybrid neural
network that classifies emotional states by learning spatial-
temporal representation of 2D EEG frames. CRAM encodes
the spatio-temporal information of the temporal slices by a
specifically designed convolutional network, then extractes the
attentive temporal dynamics of EEG temporal slices for suc-
cessful emotions classification. These seven methods use the
same pre-processing step of baseline removal, the same slice
length and the same division of training/test set as our method,
which ensures the fairness of comparison experiment. Except
CNN-RNN and CRAM, the other five methods need to extract
DE features from four frequency bands. For DT, SVM, MLP, and
DGCNN, their input are 2400 feature vectors with the size of
128× 1. For Conti-CNN, its input is 2400 3D data with the size
of 4× 9× 9, for CNN-RNN, its input is 2400 3D data with the
size of 128× 9× 9, and for CRAM, its input is 2400 2D data
with the size of 128× 32. Table II shows the mean accuracies
and standard deviations of 32 subjects with these methods. The
results show that compared with the other seven methods, our

Fig. 10. Performance comparison of each subject using different meth-
ods for valence on DEAP database.

Fig. 11. Performance comparison of each subject using different meth-
ods for arousal on DEAP database.

method achieves the best performance for both dimensions,
with an improvement of 5.14% and 4.03% compared to the
second best results. In terms of standard deviation, among the
four DNN-based methods, CRAM has much larger standard
deviations than those of the three other methods. The standard
deviations corresponding to valence and arousal experiments of
our method are the smallest compared with all other methods,
demonstrating the high stability. In a word, our method has
significant superiority in both average accuracy and standard
deviation. Fig. 10 and Fig. 11 show the recognition accuracy
of the two dimensions of valence and arousal with the eight
methods for each subject, and the accuracy for each subject
is an average of ten folds. It can be seen that our method has
achieved the best performance for each subject, demonstrating
the effectiveness of our method.

D. Result on DREAMER

For DREAMER database, we have verified the proposed
method in valence, arousal and dominance dimensions.

The classification accuracy on DREAMER database varies
with the change of the number of trees in each forest and the
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Fig. 12. Accuracy varies with number of trees in gcForest on DREAMER: (a) Valence, (b) Arousal, and (c) Dominance.

Fig. 13. Accuracy varies with number of forests in gcForest on DREAMER: (a) Valence, (b) Arousal, and (c) Dominance.

number of forests in each level of cascade forest, shown in
Fig. 12 and 13, respectively. The variation trend of accuracy
is consistent with that of DEAP database. It can be seen from
Fig. 12 that the difference between the maximum and minimum
values on vanlence, arousal and dominance dimensions are only
0.50%, 0.41% and 0.51%, respectively; and it can be seen from
Fig. 13 that the difference between the maximum and minimum
values on vanlence, arousal and dominance dimensions are only
0.84%, 0.80% and 0.71%, respectively. To strike a balance
between classification accuracy and computational resources,
we set the number of trees in each forest to 260; the number
of forests in each level of cascade forest to 24 (12 random
forests and 12 completely random forests). Thus, recognition
accuracies of our method on valence, arousal and dominance
dimensions on DREAMER database are 89.03%, 90.41% and
89.89% respectively.

Similar to DEAP database, our method was also compared
with the above-mentioned seven methods. For DT, SVM, and
DGCNN, their input are 3728 feature vectors with 56 fea-
tures. For Conti-CNN, its input is 3728 3D data with size of
4× 9× 9, for CNN-RNN its input is 3728 3D data with size of
128× 9× 9, and for CRAM, its input is 2400 2D data with the
size of128× 14. Table III shows the mean accuracy and standard
deviation of 23 subjects with these methods. The results show
that our method has obtained comparable recognition accuracy
with DGCNN, and much higher recognition accuracy than other
methods. Different from DEAP, the traditional machine learning

TABLE III
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF DIFFERENT

METHODS ON DREAMER DATABASE

algorithm SVM performes better than three DNN-based meth-
ods. Compared with the excellent SVM, our method is still about
3% higher in accuracy. In terms of standard deviations, our
method has obtained comparable results with the comparison
methods. Figs. 14, 15, and 16 show the recognition accuracy
of each subject on the three dimensions of valence, arousal and
dominance with these methods, and the accuracy of each subject
is an average of ten folds. It can be seen that our method has
obtained the highest recognition accuracy for about half of the
subjects.

E. Small-Scale Training Data Experiment

In order to verify that the proposed method is different from
deep neural networks that rely on a large amount of training data,
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Fig. 14. Performance comparison of each subject using different meth-
ods for valence on DREAMER database.

Fig. 15. Performance comparison of each subject using different meth-
ods for arousal on DREAMER database.

Fig. 16. Performance comparison of each subject using different meth-
ods for dominance on DREAMER database.

we perform small training data experiments with the proposed
method and all comparison methods on both databases. We
set the number of training data to 5%, 10%, 20%, 30%, 40%,
and 50% of the total samples to observe the performance of
each method. Table IV and V show the accuracies and standard
deviations of each method on DEAP and DREAMER databases
as the size of the training data changes, respectively. The training
data for each experiment is randomly selected from the entire
sample of the subject, and each result presented is the average
result of all subjects repeating the experiment ten times. We
can observe that no matter deep learning based or traditional
methods, the recognition accuracy declines to a certain extent
with the reduction of the proportion of training data. For DEAP,
the proposed method performs best under all conditions. More-
over, when the proportion of training data is 30%, the accuracy
of the proposed method is higher than these of all comparison
methods under the condition of 10-fold cross validation (90%).
For DREAMER, when the proportion of training data is 40%
and 50%, the recognition accuracy for valence of the proposed
method is only 0.49% and 0.66% less than those of DGCNN, re-
spectively; under other conditions, the proposed method has the
highest accuracy. These verify the effectiveness of the proposed
method under small-scale training data conditions.

F. Running Time

In our experiment, DT, SVM, and the proposed method
are trianed on a INTEL i7-7800X CPU, MLP, Conti-CNN,
CNN-RNN, CRAM, and DGCNN are trained on a NVIDIA
GPU with TensorFlow framework. The training time of each
method is shown in Table VI. It can be seen that feature-driven
methods have advantages over data-driven methods in terms of
training time. The training time of the proposed method using
CPU is only half of that of data-driven method CRAM. In
addition, gcForest is a parallel ensemble method, which shows
a significant superiority for large-scale parallel implementation.

IV. DISCUSSIONS

EEG-based emotion recognition is a hot issue in the field
of HCI in recent years, and many researchers have proposed
effective classification models to achive the good results. How-
ever, there are still some limitations. For instance, most methods
require artificial feature extraction before being sent to classi-
fiers, which not only limits the usage of original information,
but also ignores the spatial characteristics of brain regions. This
study aims to find a more effective and simpler method that is
data-driven to realize the purpose of multi-channel EEG-based
emotion recognition. In this paper, gcForest model is tailored
to multi-channel EEG-based emotion recognition from the per-
spective of fully considering the spatial-temporal information.

We compare the proposed method with seven other methods,
among which DT, SVM and MLP are traditional machine learn-
ing algorithms, Conti-CNN, CNN-RNN, CRAM, and DGCNN
are models based on DNN. Experimental results in Table II and
III verify that the proposed model is more effective. Our method
has higher recognition accuracy on both DEAP and DREAMER
databases, especially with a huge lead on DEAP. We also conduct
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TABLE IV
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF SMALL-SCALE SAMPLE EXPERIMENT WITH EACH METHODS ON DEAP DATABASE

TABLE V
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF SMALL-SCALE SAMPLE EXPERIMENT WITH EACH METHODS ON DREAMER DATABASE

TABLE VI
RUNNING TIME OF VARIOUS METHODS ON BOTH DATABASES

small-scale training data experiments on the two databases, and
the results are shown in Table IV and V. From Table II and
Table IV, we can observe that the proposed method achives the
best performance under all circumstances. When the propor-
tion of training data is 10%, 20%, 30%, 40%, and 50%, the
advantages of the proposed method are more obvious than that
of the 10-fold cross validation (90%). Specifically, for valence,
when 10-fold cross-validation is performed, the accuracy of the
proposed method is 8.24%, 7.77%, 12.15%, and 5.14% higher
than those of the other four DNNs-based methods respectively;
and when the proportion of training data is 10%, they become
12.28%, 18.86%, 15.77%, and 12.56%. From Table III and
Table V, we can observe that the proposed method achieves
similar results with DGCNN when 10-fold cross-validation is
performed; the accuracy of the proposed method is 1.63%,
2.03%, and 1.65% higher than those of it while the proportion of
training data is 5% for valence, arousal, and dominance, respec-
tively. These indicate that the proposed method has more obvious
advantages in the case of small-scale training data. Compared

with DNNs, this method does not require a large number of
training samples, which is very meaningful for some fields where
large-scale data is limited. In addition, we demonstrate the in-
fluence of the changes of two important parameters (the number
of trees in each forest and the number of forests in each level of
cascade forest) in our model on the recognition accuracy. It can
be seen from Fig. 8, Fig. 9, Fig. 12 and Fig. 13 that the proposed
method has a slight impact on the recognition accuracy with the
change of parameters. This indicates that the proposed method is
insensitive to parameter setting, which is different from DNNs-
based methods that require careful parameter adjustment. More-
over, Table VI shows the training time for each method. The time
consumption of traditional methods are generally lower than
those of DNN-based methods. Among DNN-based methods,
the running time of the proposed method is moderate, which
indicates that the proposed method can achieve a better balance
between computational resources and recognition accuracy.

During the experiment, we find that Conti-CNN and CNN-
RNN, which outperformed SVM on DEAP, did not perform well
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on DREAMER. In particular, CNN-RNN is about 6% lower in
accuracy than SVM. In addition, our method has a relatively
smaller advantage on DREAMER compared with that on DEAP.
Among all the eight methods, Conti-CNN, CNN-RNN and our
proposed method all can capture spatial information from EEG
segments by the step of constructing 2D frames according to the
spatial distribution of electrodes. The difference lies in whether
the elements in the frames are EEG data or EEG features. Specif-
ically, CNN-RNN uses original EEG signals and considers the
positions of electrodes to form 2D EEG frames, Conti-CNN
uses DE features and considers the position of electrodes to
form 3D EEG cubes that generated from 2D frames, and our
proposed method constructs 2D EEG frames using original EEG
signals. One possible reason may be that the channel number
of DEAP database is 32, while that of DREAMER is only 14,
which indicates that when the channel number is larger, each
2D frame has less zero elements, and more spatial information
can be provided using sub-block extraction technique, i.e., the
scanning process of our method and the convolution process of
CNN. Therefore, our method may be more suitable for EEG data
with a sufficient number of channels.

V. CONCLUSION

In this paper, we propose a method of gcForest for multi-
channel EEG-based emotion recognition, which reduces the
complexity of emotion recognition compared with DNNs. Scan-
ning module in gcForest is used to capture the spatial infor-
mation of EEG signal, and the cascade forest abstracts the
feature vectors with spatial-temporal information generated by
the scanning module and classifies them. Subject-dependent
experiments on DEAP and DREAMER databases have been
conducted. Experimental results have indicated that our method
achieves a better recognition performance than other state-of-
the-art methods with a moderate consumption of computational
resources. Meanwhile, the recognition results on both databases
vary with parameters adjustment are within 1% for all dimen-
sions, demonstrating that our method is robust to parameter
settings. Additionally, our method also achieves an outstanding
performance under small-scale training data conditions. Cur-
rently, this study is limited to subject-dependent classification
task. In the future, we will focus on subject-independent emotion
classification tasks based on deep forest with domain adaptation
methods.
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