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EEG-based Emotion Recognition via
Channel-wise Attention and Self Attention

Wei Tao, Chang Li, Rencheng Song, Juan Cheng, Yu Liu, Feng Wan and Xun Chen

Abstract—Emotion recognition based on electroencephalography (EEG) is a significant task in the brain-computer interface field.
Recently, many deep learning-based emotion recognition methods are demonstrated to outperform traditional methods. However, it
remains challenging to extract discriminative features for EEG emotion recognition, and most methods ignore useful information in
channel and time. This paper proposes an attention-based convolutional recurrent neural network (ACRNN) to extract more
discriminative features from EEG signals and improve the accuracy of emotion recognition. First, the proposed ACRNN adopts a
channel-wise attention mechanism to adaptively assign the weights of different channels, and a CNN is employed to extract the spatial
information of encoded EEG signals. Then, to explore the temporal information of EEG signals, extended self-attention is integrated
into an RNN to recode the importance based on intrinsic similarity in EEG signals. We conducted extensive experiments on the DEAP
and DREAMER databases. The experimental results demonstrate that the proposed ACRNN outperforms state-of-the-art methods.

Index Terms—Electroencephalogram (EEG), emotion recognition, channel-wise attention, self-attention.
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1 INTRODUCTION

EMOTION analysis is important in daily life, particu-
larly in the human-computer interaction field [1]–[5].

Emotion analysis can help increase the quality of human-
computer communication and improve the intelligence of
computer. In addition, emotion analysis plays an impor-
tant role in health care to understand the behavioral and
cognitive functioning of patients [6], [7], and physiological
signals are generally used to measure the emotional state,
including galvanic skin response, electromyography, heart
rate, respiration rate and electroencephalography (EEG) [8].

In the past decade, the relationship between emotion
and EEG signals has been studied extensively [9]–[11]. EEG
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signals, which can be obtained easily, measure voltage fluc-
tuations resulting from ionic current flows in the neurons
of the brain [12]. EEG is noninvasive, fast, and inexpensive,
thereby making it a preferred method to brain responses to
emotional stimuli. In addition, EEG signals are widely used
for emotion analysis because EEG can be explored various
information about emotions from frequency band, electrode
position, and temporal information [13]–[15].

Generally, most EEG emotion recognition methods first
design features from EEG signals and adopt classifiers to
classify the emotion features. For example, Li et al. extracted
features from the gamma frequency band and used a linear
support vector machine (SVM) to classify the extracted
features [13]. Patil et al. adopted higher-order crossings as
features, which are better than other statistical features to
classify emotions [16]. Shi et al. first proposed differential
entropy (DE) features from five frequency bands and val-
idated that DE features are superior for representing EEG
signals [17]. In addition, Duan et al. extracted DE features
from multichannel EEG data and combined an SVM and k-
Nearest Neighbor (KNN) to classify the extracted features
[18].

Recently, deep learning has been demonstrated to out-
perform traditional machine learning in many fields, e.g.,
computer vision [19], natural language processing [20] and
biomedical signal processing [21]–[23]. In addition, many
deep learning-based methods have been widely used for
EEG-based emotion recognition. On one hand, deep learn-
ing methods can be considered as classifiers after feature
extraction. For example, Yang et al. combined the DE of
multiple bands as EEG features and employed a continuous
convolutional neural network as a classifier [24]. Song et
al. designed DE features according to the electrode position
relationship and adopted a graph convolutional neural net-
work as a classifier [25]. On the other hand, many deep
learning methods are data-driven and function in an end-
to-end manner, which does not require handcrafted features
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from EEG signals. For example, Alhagry et al. proposed
an end-to-end deep learning neural network to recognize
emotion from raw EEG signals, which used an LSTM-RNN
to learn features from EEG signals and used the dense
layer for classification [15]. Yang et al. proposed a parallel
convolutional recurrent neural network for EEG emotion
recognition and achieved good performance [7]. However,
it still remains challenging to extract more discriminative
features for EEG emotion recognition. Therefore, it is im-
portant to design an effective deep learning framework that
can extract features and perform classification directly from
raw EEG signals.

Inspired by the cascade convolutional recurrent network
(CRNN), which combines CNN and RNN to extract spatial
and temporal features from EEG signals [26], we use a
CNN to extract the spatial information of EEG signals. Then,
we employ two long short-term memory (LSTM) layers to
extract temporal information, which is better at storing and
accessing information than a standard RNN [27]. Different
from a traditional CRNN, we employ a framework to extract
more discriminative spatiotemporal information using two
attention mechanisms, i.e., a channel-wise attention mech-
anism [28] and an extended self-attention mechanism [29].
Generally, CNNs are used to extract the spatial features of
EEG signals [7], however, this ignores the importance of
features among different channels. To extract more discrim-
inative features from the spatial information, some methods
adopt channel selection to choose more relevant channels
[30]. Different from traditional methods that need first select
the relevant channels artificially [31], in this study, we first
adopt an adaptive channel-wise mechanism, that transforms
channels to a probability distribution as weights and re-
codes the EEG signals based on the transformed weights.
Then CNNs are employed to extract the discriminative
spatial features of recoded signals. In addition, an RNN is
employed to explore the time information of EEG signals,
however, this also ignores the importance of different EEG
samples. Note that extended self-attention can be applied to
LSTM to utilize long-range dependencies [32]. We integrate
the extended self-attention mechanism into the RNN to
explore the importance of different EEG samples, because
this mechanism can update the weight according to the
similarity of EEG signals. As a result, more discriminative
temporal and spatial characteristics of EEG signals can be
obtained by integrating the two attention mechanisms in
our framework.

In this paper, we propose the attention-based convo-
lutional recurrent neural network (ACRNN) to deal with
EEG-based emotion recognition. Raw EEG signals can con-
tain spatial information by the intrinsic relationship among
different channels and time dependence among temporal
slices, thus, the proposed ACRNN can learn the spatial
features of multichannel EEG in the convolutional layer and
explore the temporal features of different temporal slices us-
ing LSTM networks. In addition, the channel-wise attention
and extended self-attention mechanisms can extract more
discriminative spatial and temporal features, respectively.
The proposed model was evaluated on two publicly avail-
able databases, i.e., DEAP [2] and DREAMER [3], and the
proposed method demonstrated superior performance rela-
tive to recognition accuracy in two databases. Our primary

contributions are summarized as follows.
1) We have developed a data-driven ACRNN frame-

work for EEG-based emotion recognition. This framework
integrates the channel-wise attention mechanism into a
CNN to explore spatial information, which can take the
importance of different channels by channel-wise attention
and the spatial information of multichannel EEG signals
by a CNN into consideration. Besides, ACRNN integrates
extended self-attention mechanism into RNN to explore
temporal information of EEG signals, which can take the
different temporal information by LSTM and the intrinsic
similarity of each EEG sample by extended self-attention
into consideration.

2) We conducted experiments on the DEAP and
DREAMER databases, and the experimental results indi-
cate average emotion recognition accuracies of 92.74% and
93.14% in the valence and arousal classification tasks of
the DEAP database, respectively. In addition, the proposed
method achieved mean accuracies of 97.79%, 97.98% and
97.67% in the valence, arousal and dominance classification
tasks of the DREAMER database, respectively.

The remainder of this paper is organized as follows.
Section II introduces related work, and Section III presents
the proposed method. Section IV discusses extensive exper-
iments conducted to demonstrate the effectiveness of the
proposed ACRNN. Finally, a discussion is given in Section
V, and the paper is concluded in Section VI.

2 RELATED WORK

Here, we introduce the general flow of the traditional EEG
emotion recognition framework. We then introduce the
channel-wise attention and self-attention mechanisms.

2.1 General Flow of EEG Emotion Recognition
Recently, emotion recognition from EEG signals has re-
ceived significant attention. The general flow of the EEG
emotion recognition framework is summarized as follows
(Fig. 1).

(i) Test protocol: First, the type of stimulus used, trial
duration, the number of subjects, their gender, and the
emotions to be recognized are recorded. Then, the subjects
are exposed to the stimulus, e.g., music or a movie [2], [3].

(ii) EEG recordings: The number of electrodes and test
duration are recorded, and then EEG signals are recorded
by electrodes. The subjects then assess their emotional state
by labeling the EEG recording after each trial [2], [3].

(iii) Preprocessing: To avoid artifacts in the EEG signals,
e.g., eye blinks, the EEG signals should be preprocessed
using artifact removal methods, e.g., blind source separation
and independent component analysis [33].

(iv) Feature extraction: To extract relevant emotion fea-
tures from EEG signals, information about the EEG signals is
explored, e.g., the EEG characteristics in the time, frequency,
and spatial domains [9].

(v) Various classifiers can be used to classify the ex-
tracted features, e.g., Bayesian, support vector machines,
decision trees, and deep learning classifiers [34]. Depending
on whether the classifier was trained on user-dependent
data, EEG emotion recognition can be also divided into user-
dependent and user-independent tasks.
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Fig. 1: The general flow of EEG emotion recognition.

2.2 Channel-wise Attention
Attention plays an important role in human perception
[35], [36]. For example, humans can exploit a sequence
of partial glimpses and selectively focus on salient parts
to better capture a visual structure [37]. Inspired by the
human attention mechanism, spatial attention mechanisms
have been proposed for various vision tasks, e.g., semantic
attention [38], multi-layer attention [39] and channel-wise
attention [28]. Channel-wise attention demonstrates superi-
or performance because it can change the weight of different
channels to explore the information of a feature map; thus,
it can extract more important information about channels.
Therefore, the channel-wise attention mechanism has been
used to exploit interdependencies among feature channels.
For example, Hu et al. introduced a compact module to
exploit the inter-channel relationship of a feature map [40],
and Chen et al. combined spatial and channel-wise attention
for image captioning [28].

Generally, channel-wise attention can squeeze the global
spatial information and generate channel-wise statistics [28].
In addition, it is trainable with CNNs, thus, it can be
integrated into CNN architectures [41]. Considering that
multichannel EEG signals contains the spatial information
via channels, channel-wise attention can be integrated into
a CNN to explore the importance between the channels of
EEG signals, and more discriminative spatial information
can be extracted by a CNN.

2.3 Self Attention
Self-attention is an intra-attention mechanism that relates
different positions of a single sequence to encode sequence
data based on an importance score [20]. In addition, the
self-attention mechanism is popular because it can improve
long-range dependency modeling [42]. An attention func-
tion can be described as mapping a query and a set of key-
value pairs to an output, where the query, keys, values, and
output are all vectors. The output is computed as a weighted
sum of the values, where the weight assigned to each value
is computed by a compatibility function of the query with
the corresponding key. Self-attention has been demonstrated
to perform well on simple-language question answering
and language modeling tasks. For example, Vaswani et
al. proposed an attention-based architecture for machine
translation [32], and Shen et al. proposed the directional
self-attention network to focus on the attention between el-
ements in an input sequence [29]. In EEG recognition tasks,

Training
samples

Preproces
-sing ACRNN

Labels Preproces-
sing

Emotion
classification

Cross-
entropy loss

Weight
update

Testing
samples

Preproces
-sing

Trained
ACRNN

Emotion
recognition

Fig. 2: Overview of the attention based convolutional recurrent neural
network on EEG-based emotion recognition.

to augment the amount of training samples, one EEG trial is
often segmented into several input samples. However, many
methods ignore the importance of different EEG samples.
Inspired by self-attention, we adopt this technique to further
explore the time dependence between EEG samples.

3 PROPOSED METHODS

In this section, we first introduce the proposed EEG emotion
recognition framework, and then we introduce our raw
EEG signal preprocessing technique. Finally, we describe the
construction of the proposed ACRNN in detail.

3.1 Framework of Proposed ACRNN

Generally, most EEG-based emotion recognition studies
have focused on first extracting relevant features, and then
the extracted features are used to classify the subjects e-
motional state [8], [14], [25]. In practice, raw EEG sig-
nals contain rich spatial and temporal information, which
can be extracted to recognize a subjects emotional state.
The proposed ACRNN is a data-driven method that in-
tegrates channel-wise [28] and extended self-attention [29]
mechanisms into a CNN-RNN simultaneously. In addition,
ACRNN can extract spatial and temporal information as
emotion features, and classifies the extracted features using
softmax function. Consequently, this end-to-end technique
improves the accuracy of EEG based emotion recognition
(Fig. 2). First, we divide the EEG samples into training and
testing samples. Then, the training and testing samples are
preprocessed by removing baseline signals, respectively. In
addition, labels are preprocessed using the slicing window
technique. Next, we use the training samples to train the
proposed ACRNN model, compute the cross-entropy loss
and update network parameters using the Adam optimiz-
er [43]. Finally, the trained model is used to identify the
emotional state of the testing samples, and classification
accuracy are considered as the final recognition results.

3.2 Preprocessing of Proposed ACRNN

In the proposed ACRNN, preprocessing involves removing
baseline signals and sliding windows. Generally, recorded
EEG signals contain baseline and trial signals [2], [3]. Yang
et al. proposed that baseline removal preprocessing can
improve EEG emotion recognition on the DEAP database
[7]. Here, let XR = [XB,XT] ∈ RM×N be the recorded
EEG signals with H Hz sampling frequency and duration
T1, where M is the number of EEG electrode nodes, N is
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Fig. 3: The structure diagram of the attention based convolutional recurrent neural network.

the number of sampling points. In addition, XB ∈ RM×L

denotes the baseline signal with duration T2, L denotes the
number of sampling points, Xi (i = 1, 2, . . . , T2) ∈ RM×H

denotes the i-th second baseline signals. Thus, the mean
value of baseline signal per-second can be formulated as
follows:

XB =

∑T2

i=1 Xi

T2
, (1)

where XB ∈ RM×H denotes the mean value of baseline
signal per-second. Let XT ∈ RM×J represents the trial EEG
signals with duration T3, where J is the number of sampling
points. To remove the baseline of trial EEG signals, XT is
segmented into several slices Xj (j = 1, 2, . . . , T3) ∈ RM×H

with a one-second nonoverlapping sliding window, and the
per-second baseline-removed signals can be formulated as
follows:

X′j = Xj −XB. (2)

Finally, these baseline signals removed temporal slices X′j
are concatenated into a new matrix XT

′ ∈ RM×J .
Generally, to augment the amount of training data, one

EEG trial XT
′ ∈ RM×J is often segmented into several

temporal slices S = {S1, S2, . . . , Sn} by sliding window.
Here, Si (i = 1, 2, ..., n) ∈ RM×T represents the i-th EEG
sample, and T denotes the number of sampling points in
each sliding window. Generally, a human emotional state
lasts from 1 s to 12 s, and previous studies have shown that a
3-s sliding window can achieve good classification accuracy
[44], thus, we employ a 3-s sliding window, i.e., T/H = 3.

3.3 The Construction of Proposed ACRNN
The proposed ACRNN comprises the channel-wise atten-
tion mechanism, a CNN, an RNN and the extended self-
attention mechanism. The structure of the proposed ACRN-
N is shown in Fig. 3. The left side of diagram shows

the spatial feature extraction module. First, to explore the
importance among the different channels of multichan-
nel EEG signals, we employ the attention mechanism in
a channel-wise manner into the EEG signals (Fig. 3). In
actual EEG signal acquisition, different EEG channels in
multichannel devices often contain redundant or less rele-
vant information. To enhance emotion recognition accura-
cy, some methods adopt channel selection to choose more
relevant channels [30]. Different from traditional methods
that need select relevant channels artificially [31], we adopt
the adaptive channel-wise mechanism, which can consider
the information of all channels and assign weights to d-
ifferent channels based on importance. In our framework,
S = {S1, S2, . . . , Sn} represents EEG samples after prepro-
cessing, and Si = [s1, s2, . . . , sm] (i = 1, 2, ...,m) is the i-th
EEG sample, where sj (j = 1, 2, ...,m) represents the j-th
channel of EEG sample Si, and m is the total number of
channels of each sample. In this model, we first apply mean
pooling for each channel of EEG sample to obtain channel-
wise statistics as follows:

s− =
[
s−1 , s

−
2 , . . . , s

−
m

]
, (3)

where s−j (j = 1, 2, ...,m) is the mean of the j-th chan-
nel. To reduce model complexity and improve generaliz-
ability, the channel-wise attention mechanism adopts two
fully-connected (FC) layers around the non-linearity, i.e.
a dimensionality-reduction layer with parameter W1 and
bias terms b1 with reduction ratio r and tanh function
as the activation function, and a dimensionality increasing
layer with parameter W2 and bias terms b2. Thus, the
gating mechanism of channel-wise attention is expressed as
follows:

v = softmax
(
W2 ·

(
tanh

(
W1 · s− + b1

)
+ b2

))
, (4)
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where the softmax function transforms the importance of
channels to probability distribution v = [v1, v2, ..., vm],
which represents the importance of different channels. Fi-
nally, we consider probability as the weight to recode the
information of the EEG sample Si = [s1, s2, ..., sm] in each
channel. Thus, the j-th (j = 1, 2, ..., m) attentive channel fea-
ture extracted via channel-wise attention can be represented
as follows:

cj = vj · sj , (5)

therefore, C = {C1, C2, . . . , Cn} represents the extracted
channel-wise attentive features, the i-th extracted feature
Ci = [c1, c2, ..., cm] can be obtained by channel-wise mul-
tiplication between each channel of Si = [s1, s2, ..., sm] and
each element of v = [v1, v2, ..., vm].

Then, we use the CNN to further extract spatial infor-
mation of EEG signals, where the number of convolution
kernels is k, the kernel height is the same as the number of
electrodes. Here, the kernel width is also designed to explore
temporal information of the EEG signals. In addition, we use
the exponential linear unit (ELU) function as the activation
function in the convolution operations, which is better than
the commonly used rectified linear unit (ReLU) function
[45]. Thus, the i-th featureC ′i (i = 1, 2, ..., n) can be obtained
from the i-th channel attentive feature Ci after convolution
and activation operations.

After that, we adopt a pooling layer to reduce
the number of parameters and further extract features.
Here, the i-th encoded representation after pooling is
{Qi|Qi = MaxPool (C ′i) , i = 1 . . . n}.

The right side of the structure diagram shows the tem-
poral feature extraction module (Fig. 3), which comprises
a two-layer LSTM and extended self-attention mechanism.
The LSTM network can learn the context information of
the sequence because it is based on a recurrent structure
[27]. The LSTM network has been successfully used for EEG
emotion recognition because it can learn features from EEG
data based on temporal dependence [15]. As shown in Fig.
4, an LSTM cell receives three inputs, i.e., input Qi at the
current time i, output ci−1 of previous time i− 1, and hi−1
representing the hidden state of the previous time i− 1.
Then, the LSTM cell exports two outputs, i.e., output ci
at the current time i and hidden state hi represented as
the i-th temporal feature extracted from LSTM. The LSTM
cell contains three gates, i.e., the input, forget and output
gates to control the data flow by the sigmoid and tanh
activation functions. Although here training samples and
testing samples are different and not consecutive in time,
the encoded samples contain spatial information after the
spatial feature extraction module. Meanwhile, the input
gate weight is organized to learn spatial information while
the forget weight map organizes to learn more temporal
information, the input gate and forget gate compete with
each other to input new information into the cell or keep
the current temporal information, respectively [46]. Thus,
the LSTM network can extract the spatiotemporal features.

In this study, the number of LSTM units in each layer
is the same as the number of EEG samples, and the output
in each time step can be considered as the temporal infor-
mation extracted from each sample. Generally, the LSTM

X +

sigmoid tanh sigmoid sigmoid

tanh

X X

Forget gate Input gate Output gate

Fig. 4: LSTM unit architecture.

network adopts two stacked layers to remember and encode
all scanned spatial and temporal areas [47], thus, we set the
number of LSTM layers to two. Therefore, the i-th output
of the LSTM network is the hidden states of the second
recurrent layer {h′i|h′i = lstm (Qi) , i = 1 . . . n}.

To extract more discriminative temporal information, we
adopt the extended self-attention mechanism [29] to assign
weights to each EEG signal sample by exploring the intrinsic
importance of each sample. The structure of self-attention is
shown in Fig. 5. Different from the traditional self-attention
mechanism, which is used to assign importance to each re-
current encoded slice and aggregate this information to form
a final representation [48], the extended attention is a natural
extension of additive attention at the multi-dimensional
feature level. It can better describe the specific meaning by
computing the similarity within each sample from different
points, and the obtained z′i can be considered as a feature-
wise score vector from the i-th sample h′i. In addition, the
extended self-attention mechanism adds two bias terms to
the inside and outside of the activation function, and the
i-th feature-wise score vector z′i can be expressed as follows:

z′i = f (h′i, qi) =WTσ (W1h
′
i +W2qi + b1) + b, (6)

where f (h′i, qi) represents the intrinsic similarity of the i-th
encoded EEG sample, and qi is the aligned pattern vector
generated based on the feature vector h′i by linear trans-
formation, where the dimension is the same as the feature
vector. Here, the activation functions σ(·) is an exponential
linear unit (ELU), W and b are the weight and bias terms of
σ function, respectively, W1, W2 are weight parameters, and
b1 is the bias terms. Then, p = {p1, p2, ..., pn} denotes the
probabilities of all samples, and the probability of the i-th
EEG sample can be expressed as follows:

pi =
exp

(
z′i

T · h′i
)

∑n
i=1 exp

(
z′i

T · h′i
) . (7)

Lastly, A = {A1, A2, . . . , An} denotes the features ex-
tracted by the extended self-attention mechanism, and the
i-th attentive feature extracted by the extended self-attention
mechanism can be computed as follows:

Ai = pi · h′i. (8)
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Fig. 5: Extended self-attention architecture.

In the last part of the proposed ACRNN, we employ the
softmax layer as the classifier. The extracted spatiotempo-
ral attentive features are A = {A1, A2, . . . , An}, and the
softmax classifier receives these extracted features as input
to recognize emotion as follows:

P = softmax(WA+ b), (9)

where P = {P1, P2, . . . , Pn}, Pi (i = 1, 2, ..., n) represents
the predicted probability of the i-th EEG sample, and W
and b are the weight and bias terms of the softmax function,
respectively. Then, the cross-entropy error over all labeled
samples is evaluated:

L = −
n∑

i=1

Ŷi log (Pi) , (10)

where Ŷi is the label of the i-th EEG sample, and the lower
cross-entropy error L indicates higher emotion recognition
accuracy.

In summary, we have designed a framework to extract
features and classify emotion from raw EEG signals. We
adopt a channel-wise attention mechanism to adaptively
assign the weights of different channels, which can extract
the intrinsic information among channels, then employ a
CNN to extract the spatial information of encoded EEG
signals. In addition, we adopt two-layer LSTM to explore
the temporal information of different EEG samples, and we
integrate the extended self-attention mechanism to assign
weight to EEG samples based on the importance of each
sample. Finally, spatiotemporal attentive features can be
obtained for EEG emotion recognition.

4 EXPERIMENTS

Here, we introduce two widely used databases. Then, we
introduce six deep learning methods and two traditional
methods for comparison. We then demonstrate the model
implementation in our experiments. Finally, we present and
compare the experimental results obtained by the proposed
method and compared methods.

4.1 Data Materials

To validate the performance of the proposed ACRNN,
we conducted experiments on two widely used databases,
i.e., the database for emotion analysis using physiological
signals (DEAP) [2] and database for emotion recognition
through EEG and ECG signals (DREAMER) [3]. The DEAP

database includes the EEG and peripheral physiological sig-
nals of 32 participants recorded while they subjects watched
40 pieces of music videos. The database contains 32-channel
EEG signals and eight-channel peripheral physiological sig-
nals, where the EEG signals are used for emotional recog-
nition, and the peripheral physiological signals are abne-
gated. In this experiment, the EEG signals were sampled
at 512 Hz and then downsampled to 128 Hz. In addition,
electrooculography (EOG) artifacts were removed using the
blind source separation technique. The preprocessed EEG
data of each trial contain 60-s trial data and 3-s baseline data.
The emotional music videos include 40 one-minute clips,
and the participants were asked to record their levels of
arousal, valence, liking, and dominance for each video from
1 to 9. In our experiment, we selected valence and arousal
as the emotional evaluation criteria, and the threshold to
divide trials into two classes according to the rated levels
of arousal and valence was set to five. Each subject file
contained two arrays, and the data format of these files is
detailed in Table 1.

TABLE 1
DEAP DATABASE

Array name Array shape Array centents
Data 40 ×40×8064 video/trial×channel×data

Labels 40×4 video/trial×label

The second database is DREAMER (Table 2), which is
a multimodal database of EEG and ECG signals recorded
during affect elicitation by means of audio visual stimuli.
Signals from 23 participants (14 males and 9 females) were
recorded, and participants were asked to record the levels
of arousal, valence, and dominance after each stimuli. The
EEG signals were recorded at a sampling rate of 128 Hz
using an emotive EPOC system [49]. Each film clip is
65 to 393 s, which is sufficient to elicit single emotions.
Moreover, the recorded EEG signals contain baseline signals
and typically last 4 s before each film clip. In addition,
most ocular artifacts (eye blinking, eye movement, cardiac
interferences, etc.) have been removed with linear phase
FIR filters. Furthermore, to avoid contaminating the data
with multiple emotions, the recordings captured during the
last 180 s of each clip were used for further analysis. The
threshold of rating values is placed in the middle, where
values less than or equal to 3 represent low valence, arousal,
and dominance, and values greater than 3 represent high
valence, arousal, and dominance.

4.2 Model Implementation

After the preprocessing stage, we obtained a total of EEG
800 samples for each subject in DEAP database, where each
sample is Si (i = 1, 2, ..., 800) ∈ R32×384. For DREAMER,
we obtained a total of EEG 1250 samples for each subject,
where each sample is Si (i = 1, 2, ..., 1250) ∈ R14×384. We
shuffled all samples from different trials for each subjec-
t. Then, we used 10-fold cross-validation to evaluate the
performance of the proposed and baseline methods. The
average performance of the 10-fold validation process was
taken as the final experimental results. The model was im-
plemented with the TensorFlow framework and trained on
an NVIDIA TITAN Xp pascal GPU. In addition, the Adam
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optimizer was employed to minimize the cross-entropy loss
function, and the network parameters were optimized with
a learning rate of 10−4, and the dropout regularization was
set to 0.5. Batch normalization was adopted to achieve better
performance during training. The size of the convolution
kernel was a × b, the height was set a = 32 for DEAP and a
= 14 for DREAMER, and the width was b = 40. The number
of kernels was k = 40 and the pooling size was 1 × 75 with a
stride of 10. In addition, we set the dimension of the hidden
state in LSTM to 64.

4.3 Results and Analysis

To validate the effectiveness of the proposed method, we
conducted extensive experiments on two databases. To val-
idate the performance of the attention mechanisms, we
designed three models to demonstrate the influence of the
channel-wise attention and extended self-attention mecha-
nisms, including CNN + RNN (CNN-RNN), Channel-wise
attention mechanism + CNN + RNN (A-CNN-RNN) and
CNN + RNN + extended self-attention mechanism (CNN-
RNN-A). Details for these models are shown in Table 3.
The CNN-RNN model comprised a CNN and LSTM net-
work, and was designed to validate the effectiveness of the
baseline framework, which can extract emotional features
from raw EEG signals using a cascade framework. The
A-CNN-RNN model comprised the channel-wise attention
mechanism, a CNN and LSTM network, and was designed
to validate the effectiveness of the channel-wise attention
mechanism for the baseline framework. The CNN-RNN-
A model comprised a CNN, LSTM network and the ex-
tended self-attention, and was designed to validate the
effectiveness of extended self-attention mechanisms for the
baseline framework. In addition, we compared the pro-
posed method with three recent deep learning methods:
continuous convolutional neural network (Conti-CNN) [24],
a graph convolutional neural network (GCNN) [25], and a
convolutional recurrent attention model (CRAM) [48]. The
Conti-CNN can combine the features of multiple bands to
improve recognition accuracy [24], the GCNN can adopt
different entropy (DE) feature as inputs, and use the spectral
graph filtering to extract features and recognize emotion
[25], and the CRAM can utilize a CNN to encode the high-
level representation of EEG signals and a recurrent attention
mechanism to explore the temporal dynamics [48]. In addi-
tion, we employed two traditional feature-based classifiers
for comparison, including support vector machine (SVM)
and decision tree (DT) [24]. All methods were processed
by the same preprocessing as ACRNN, i.e., baseline signal
removal and sliding windows.

For the traditional classifiers, we used DE features as in-
puts [17], [18]. DE feature has the balance ability of discrimi-
nating EEG pattern between low and high frequency energy,
which is typically used as frequency-domain features in
EEG emotion recognition [14], [47], [50]. According to the
literatures [18] and [51], the band-pass filter is applied to
EEG signals to obtain the sub-band signals, which approx-
imately follow a Gaussian distribution. Consequently, five
sub-bands were defined: 1) delta (1-3 Hz); 2) theta (4-7 Hz);
3) alpha (8-13 Hz); 4) beta (14-30 Hz); and 5) gamma (31-
50 Hz). Note that we extracted DE features from the laterer

TABLE 2
DREAMER DATABASE

Audio-visual stimuli

Number of videos 18
Video content Audio-Video

Video duration 65-393 s (M = 199 s)

Experiment information
Number of participants 23

Number of males 14
Number of females 9
Age of participants 22-33

Rating scales Arousal, Valence, Dominance
Rating values 1-5

Recorded signals 14-channel 128 Hz EEG

TABLE 3
BASELINE MODEL AND ATTENTION-BASED MODELS FOR EEG

EMOTION RECOGNITION

Model
Component channel-wise attention CNN LSTM network self-attention

CNN-RNN × X X ×
A-CNN-RNN X X X ×
CNN-RNN-A × X X X

ACRNN X X X X

four sub-band signals because the higher-frequency band
(approximately 30-100 Hz) is more suitable for EEG emotion
recognition [13]. The final feature vector was a concatenation
of features from all channels. For DEAP, the final feature
vector was 4 × 32 = 128 dimensions, and each subject
yielded 800 samples, where each sample Xi ∈ R32×128 (i =
1, 2, ..., 800). For DREAMER, the final feature vector was 4×
14 = 56 dimensions, and each subject yielded 1250 samples,
where each sample Xi ∈ R14×56 (i = 1, 2, ..., 1250).

In our work, we conducted the experiments on the same
subject with the proposed ACRNN and compared methods
for subject-dependent EEG emotion recognition. We divided
the sample data into training sets and test sets, and then
used 10-fold cross validation [52]. Typically, 10-fold cross
validation divides data into 10 equal data subsets, and one
subset is used as the test set, and the other nine subsets form
the training set. This process was repeated 10 times. For the
DEAP database, the number of training samples was 720,
and the remaining 80 samples for each subject were used as
test samples. For the DREAMER database, the numbers of
training and test samples were 1125 and 125, respectively.

To further analyze the contribution of channel-wise at-
tention, we performed experiments to compute the channel
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Fig. 6: The average channel weight on DEAP database.
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TABLE 4
The relationship between greater weight channels and brain region in

DEAP and DREAMER

Database Channel Brain region

DEAP

F3 Frontal
FC5 Frontal
P3 Parietal
P7 Parietal
F8 Frontal
Cz Central
C4 Central
P8 Parietal

DREAMER T8 Temporal
F8 Frontal

weights of EEG signals by channel-wise attention. Figs. 6
and 7 show the average channel weights in DEAP and
DREAMER, respectively. There are 32 channels in DEAP
dataset and 14 channels in DREAMER dataset. As shown,
the channel weights of EEG signals in DEAP and DREAM-
ER are both different in channel-wise attention mechanism.
Fig. 6 shows the channel weights of FC5, P3, C4, P8 are
obviously greater than other channels on two dimensions
in DEAP database. Fig. 7 shows the channel weights of
T8 and F8 are obviously greater than other channels on
three dimensions in DREMAER database. The electrodes are
placed according to the international 10-20 system in two
databases, the relationship between greater weight channels
and brain region is as shown in Table 4. The results are also
consistent with some studies, which has demonstrated the
EEG signals related to emotions are mostly distributed in the
frontal lobe, the temporal lobe and parietal lobe [30], [31],
[53]. The greater channel weight also indicates the given
channels are more related to emotions and more important
in the EEG signals.

Table 5 shows the average recognition accuracies of the
proposed and compared methods on valence and arousal in
the DEAP database. As can be seen, the average recogni-
tion accuracy of A-CNN-RNN improved by approximately
30% and 25% compared to the baseline framework CNN-
RNN on two dimensions because channel-wise attention
focuses on the spatial features among different channels.
In addition, the proposed ACRNN improved the average

recognition accuracy by 0.6% and 0.5% compared to A-
CNN-RNN because the ACRNN combines the channel-
wise and extended self-attention mechanisms to extract the
spatiotemporal attentive information of the EEG signals. In
addition, we found that CNN-RNN-A improved recogni-
tion accuracy by approximately 27% on two dimensions
compared to CNN-RNN because the extended self-attention
mechanism of CNN-RNN-A extracts attentive information
according to the importance of each sample. In addition,
the proposed ACRNN improved recognition accuracy by
approximately 3% on two dimensions compared to CNN-
RNN-A because the proposed model exploits both attention
mechanisms simul-taneously. Compared to the three deep
learning methods (Conti-CNN, CRAM, and GCNN), the
experimental results indicate that the proposed ACRNN
improved the average recognition accuracy by 10%, 8%
and 5%, respectively. Compared to traditional methods, the
ACRNN achieved better recognition performance than the
traditional methods, e.g., DT and the SVM.

Table 6 shows the average recognition accuracies of the
compared methods obtained on the DREAMER database.
As shown, emotion recognition accuracy improved signif-
icantly on the DREAMER database. For example, the pro-
posed ACRNN improved the average recognition accura-
cy by 15%, 9% and 5% compared to Conti-CNN, GCNN
and CRAM, respectively. Thus, the proposed ACRNN can
achieve the best recognition accuracy among all compared
methods, and the experimental results demonstrate the ef-
fectiveness of integrating the two attention mechanisms into
the CNN-RNN.

TABLE 5
AVERAGE ACCURACIES (%) OF DIFFERENT METHODS ON THE

VALENCE AND AROUSAL CLASSIFICATION TASKS OF DEAP
DATABASE (MEAN ± STD. DEV.)

Valence Arousal
DT 75.95 ± 4.76 78.18 ± 5.45

SVM 89.33 ± 7.41 89.99 ± 6.74
Conti-CNN 82.77 ± 4.47 81.55 ± 6.55

CRAM 87.09 ± 7.49 84.46 ± 9.27
GCNN 88.24 ± 3.18 87.72 ± 3.32

CNN-RNN 62.75 ± 7.53 67.12 ± 9.13
A-CNN-RNN 91.48 ± 5.02 91.59 ± 5.42
CNN-RNN-A 89.15 ± 6.66 89.96 ± 5.93

ACRNN 93.72 ± 3.21 93.38 ± 3.73

TABLE 6
AVERAGE ACCURACIES (%) OF DIFFERENT METHODS ON THE

VALENCE, AROUSAL AND DOMINANCE CLASSIFICATION
TASKS OF DREAMER DATABASE (MEAN ± STD. DEVC.)

Valence Arousal dominance
DT 68.81 ± 6.87 67.50 ± 7.28 67.43 ± 6.73

SVM 76.71 ± 5.89 77.54 ± 5.62 75.76 ± 5.63
Conti-CNN 81.72 ± 5.24 82.48 ± 5.11 82.58 ± 5.28

CRAM 92.27 ± 2.95 93.03 ± 1.87 93.34 ± 1.78
GCNN 88.87 ± 3.58 88.79 ± 3.86 88.54 ± 3.89

CNN-RNN 78.59 ± 13.87 77.66 ± 13.34 77.75 ± 14.22
A-CNN-RNN 97.47 ± 2.32 97.92 ± 1.60 98.15 ± 1.76
CNN-RNN-A 96.61 ± 3.42 97.36 ± 2.63 97.54 ± 2.16

ACRNN 97.93± 1.73 97.98 ± 1.92 98.23 ± 1.42

To demonstrate the performance of the proposed method
and compared methods for each subject, we conducted
experiments on each subject. Figs. 8, 9, 10, 11 and 12
show the average accuracy and standard deviation of each
subject on each dimension. As can be seen, the traditional
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Fig. 8: Average accuracies (%) on each subject of different methods on
arousal classification tasks on DEAP database.

5 10 15 20 25 30

Subject

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Valence

SVM
DT
conti-CNN
CRAM
GCNN
CNN-RNN
CNN-RNN-A
A-CNN-RNN
ACRNN

Fig. 9: Average accuracies (%) on each subject of different methods on
valence classification tasks on DEAP database.

SVM and DT methods achieved good average recognition
accuracy on some subjects, however, the standard devia-
tions were very large. In addition, the compared methods
performed worse on some subjects. However, we found that
the three attention-based methods achieved better average
recognition accuracy on each subject, and the standard
deviations were less than those of the compared methods.
Thus, the experimental results demonstrate that attention-
based methods can work better than the compared methods
for each subject. Furthermore, the results indicate that the
proposed ACRNN combines channel-wise attention module
and extended self-attention to exploit more discriminative
information for EEG emotion recognition and can achieve
superior recognition accuracy on two public databases.

5 DISCUSSIONS

EEG-based emotion recognition is widely used to help
computers better understand the current emotional state of
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Fig. 10: Average accuracies (%) on each subject of different methods on
arousal classification tasks on DREAMER database.
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Fig. 11: Average accuracies (%) on each subject of different methods on
valence classification tasks on DREAMER database.
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Fig. 12: Average accuracies (%) on each subject of different methods on
dominance classification tasks on DREAMER database.
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the user [21]. Traditional EEG recognition methods first de-
sign hand-crafted features from raw EEG signals, and then
employ classifier to classify these features. Recently, deep
learning methods have an employed end-to-end technique
to recognize emotion from raw EEG signals. However, it still
remains challenging to extract more discriminative features
from raw signals for EEG emotion recognition. Thus, a
discriminative framework to recognize the emotional state
from the raw EEG signals is required. Considering that
raw EEG signals contain spatial information by the intrinsic
relationship between different channels and time depen-
dencies among temporal slices, we have proposed ACRNN
to extract spatial and temporal attentive information and
classify the emotional state of a subject.

In this framework, a channel-wise attention mechanism
extracts the difference among channels from the EEG sig-
nals by assigning the weights to different channels, and
a CNN is designed to extract the feature map as spatial
information by the convolution operation on all channels
of the EEG signals. Different from some methods based on
brain cognitive function, they need to focus on EEG chan-
nels and to design relevant features [54]–[56]. For example,
Li et.al constructed emotion-related brain networks with
phase locking value (PLV) and adopted a multiple feature
fusion approach to combine the compensative activation
and connection information for emotion recognition [55],
Wang et.al combined brain directed connectivity (BDC) and
DE features which are in different frequency bands among
brain areas to extract discriminative information to improve
recognition accuracy [56]. However, our proposed method
adopt channel-wise attention to allocate weights in different
channels. To further analyze the importance of different
channels, we compute the average channel weights. From
Figs. 6 and 7, we can find the channel weights of EEG
signals in DEAP and DREAMER appear different accord-
ing to the channel-wise attention mechanism. The channel
weights of FC5, P3, C4, P8 are clearly greater than the other
channels on two dimensions in DEAP database, and the
channel weights of T8 and F8 are obviously greater than the
other channels on three dimensions in DREMAER database.
The result demonstrates that the EEG signals relevant to
emotions are mostly distributed in the frontal lobe, the
temporal lobe and the parietal lobe, which is consistent
with the existing studies [30], [31], [53]. It can also be seen
that the channels with computed greater weights are more
related to emotions and thus more important in EEG-based
emotion recognition. To demonstrate the effectiveness of the
channel-wise attention mechanism, we integrate channel-
wise attention into the baseline CNN-RNN framework, and
the experimental results demonstrate that the channel-wise
attention of the A-CNN-RNN can improve the average
accuracy by approximately 30% compared to the CNN-RNN
model on the DEAP and DREAMER databases because the
channel-wise attention mechanism can transform channels
to a probability distribution as weights and recode the EEG
signals based on the transformed weights. In addition, the
extended self-attention mechanism is designed to explore
the importance of different EEG samples. To demonstrate
the effectiveness of the extended self-attention mechanis-
m, we integrated it into the baseline CNN-RNN frame-
work, and the experimental results show that extended self-

attention can improve average accuracy by 27% and 29%
compared to the CNN-RNN model on these databases. The
experimental results also demonstrate that the extended
self-attention mechanism focuses on more important EEG
samples by scoring the probability based on the similarities
among samples.

In summary, the channel-wise attention and extended
self-attention mechanisms improve the average accuracy
greater than 25% on two both databases. This indicates
that these attention mechanisms can improve EEG emo-
tion recognition and achieve comparable recognition results.
However, compared to extended self-attention, channel-
wise attention improved the average recognition accuracy
by approximately 2% and 1% on the DEAP and DREAMER
databases, respectively. This indicates that channel-wise at-
tention performs slightly better than extended self-attention.
In summary, the proposed ACRNN is a cascade frame-
work that integrates channel-wise attention and extended
self-attention mechanisms. It can effectively extract spa-
tiotemporal attentive features simultaneously. In addition,
our all experimental results are obtained by 10-fold cross-
validation, the high accuracy and low standard deviation
have also demonstrated that the proposed ACRNN can
achieve superior recognition accuracy.

6 CONCLUSION

In this paper, we have proposed an end-to-end deep learn-
ing method for EEG emotion recognition. The proposed
ACRNN takes the spatial information, temporal information
and attentive information of EEG signals into consideration.
In addition, we integrate channel-wise attention into a CNN,
which can extract spatial attentive features, and channel-
wise attention can extract the attentive information among
the channels. We also integrated extended self-attention into
RNN, which can extract attentive information based on the
importance of each sample. Finally, extensive experimen-
tal results have demonstrated that the proposed ACRNN
achieved average accuracies of 93.72% and 93.38% on the va-
lence and arousal classification tasks in the DEAP database,
respectively. In addition, the proposed ACRNN achieved
average accuracies of 97.93%, 97.78% and 98.23% on valence,
arousal, and dominance classification tasks in the DREAM-
ER database, respectively. Compared to existing methods, it
is clear that the proposed ACRNN improved EEG emotion
recognition accuracy in the DEAP and DREAMER databas-
es. In future work, we will study the trial-based and inter-
subjects EEG emotion recognition based on the attention
mechanism.
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