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Abstract— Remote photoplethysmography (rPPG) is an attractive video-based technique to monitor heart rate (HR)
information in telehealth screening. The subjects are required to stay stationary in the remote screening scenario and
ambient lights become the main interference source of measuring HR with rPPG. In this paper, we introduce a novel
approach robust against spatially uneven illumination interference in rPPG by combining ensemble empirical mode
decomposition (EEMD) with multiset canonical correlation analysis (MCCA). We adopt the following procedures to ensure
that the pulses dominate the correlations across multiple signal sets while the illumination noises are as diverse as
possible. Specifically, a group of optimal regions of interest (ROIs) are selected according to the quality indicators defined
from the green channel in each candidate ROI. A multi-channel signal set is then constructed by decomposing the green
signal with EEMD. Only those intrinsic mode functions (IMFs) with the dominant frequencies falling into the interested
HR range are utilized as the input of MCCA. The canonical variables (CVs) with the highest cross correlations are derived
as the underlying candidate pulses. Finally, fast Fourier transform (FFT) is employed to calculate the dominant frequency
and the target HR is determined based on both the quasi-periodic property and the continuity of HR. The proposed
EEMD-MCCA method is validated on both the in-house BSIPL-RPPG and the public COHFACE databases, which achieves
superior performance over several typical rPPG methods. This study will provide a promising tool for realistic rPPG
applications in telehealth screening.

Index Terms— Remote photoplethysmography, heart rate estimation, joint blind source separation, uneven illumination

I. INTRODUCTION

Telehealth systems provide medical services to remotely
detect, monitor, and diagnose patients with the help of modern
communication technology. One of the popular telehealth
applications is remote health screening. The accurate mea-
surement of heart rate (HR) is usually required in telehealth
systems, since it is closely relevant to the status of human
health, mood, and stress etc. The remote photoplethysmog-
raphy (rPPG) has attracted much attention for non-contact
video-based HR measurement in telehealth systems. It extracts
pulsatile information from facial videos [1], [2], where the
blood volume variations caused by cardiac activities can be
measured through changes of skin colors.

In common scenarios of rPPG-based health screening,
subjects are asked to put their faces within a predefined
region on the screen and they need to keep stationary during
the screening. This greatly avoids motion artifacts of rPPG
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and illumination noise becomes the main interference of the
pulsatile signal in such case. For example, the spatially-
uneven distribution of lights due to the skewed angle of the
face and light sources can cause inconsistent intensities of
pulse waveforms in different facial regions. The ambient light
variations due to light sources can also severely disturb the
subtle color changes caused by heart beating. The two kinds
of illumination noise, especially the former one, which is more
common for rPPG applications, both need to be eliminated for
reliable remote HR screening.

Many efforts have been made to suppress illumination noise
from both hardware and algorithms. Infrared cameras are
considered to be useful against illumination variations with
visible wavelengths. However, the infrared light is not so
sensitive to the pulsatile information as the visible light and
the popularity of infrared cameras is also not as wide as the
RGB ones [3], especially for phone-based screening. Various
algorithms have also been proposed to address illumination
interference for RGB cameras.

1) Since the videos record simultaneously the pulsatile
information and illumination artifacts, one common way
of designing illumination-robust methods is to directly
decouple the pulse from mixed observation signals.
For example, Lin et al. [4] introduced the ensemble
empirical mode decomposition (EEMD) to decompose
the pulse from the green channel. Lam et al. [5] took
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the blind source separation (BSS) to estimate HR from
multiple patch regions of interest (ROIs). Liu et al. [6]
employed the homomorphic filtering to linearly decouple
the illumination noise, and the pulse was further extract-
ed through an adaptive spatiotemporal filter.

2) Another kind of method takes the background as a
reference to estimate the temporal ambient lighting
variation and then remove it from the mixture in facial
ROI to get the pulse. For example, Cheng et al. [7]
took the temporal lighting variations from background
ROI as a reference and used joint blind source separa-
tion (JBSS) [8] to eliminate noise interference caused
by illumination variations. Later, Lee et al. [9] also
employed a similar idea to deal with the illumination-
induced challenges under driving conditions.

3) Recently, learning-based methods [10]–[12] have also
been proposed to determine pulsatile information from
large facial video data sets containing illumination-
induced noise. The neural networks learn to build a
mapping between the pulse-related input and the target
HR using a large and diverse training data to ensure the
robustness of the mapping against illumination-induced
noise.

Compared to existing studies on temporal illumination vari-
ations, less attention is paid to the issue of spatially uneven
illuminations on facial skins. In most existing methods, the
pulse is still extracted from a large ROI that possibly covers
skins with quite different illumination intensities. Particularly,
those methods designed using reference from background
can not deal with uneven illuminations, because the ambient
lights in the background may be different from that of the
facial region. On the other hand, the generalization capability
for learning-based methods has always been a challenge for
limiting their practical applications. It is well known that the
illumination can be assumed to be uniform within a small
patch. However, the area of the skin ROI is preferred not to
be too small, in case of bringing interference of quantization
noise. A compromise solution is to extract the HR from
multiple small patches. For example, the target HR in [5] was
voted from the histogram of all HR estimations independently
obtained from small patch ROIs. But its performance strongly
depends on the quality of HR estimation on each single
patch. Considering these challenges, further research is still
required for removing artifacts caused by spatially uneven
illuminations in rPPG. This is especially important for remote
HR screening in telehealth systems, where other interferences
are already minimized when cooperative subject is required to
keep stationary.

In this paper, we introduce a novel method applied with
multiple patch ROIs to extract pulse signals robust against
spatially uneven illuminations. In detail, we take the multi-
set canonical correlation analysis (MCCA)-based JBSS [13]
technique to extract the shared pulsatile information from
multiple patch ROIs. To guarantee the quality of each signal
set, two schemes are introduced to prepare the input signal
sets. First, multiple patch ROIs are defined and the illumination
is considered to be uniform on each patch. We select the four

best ones according to the quality indices defined with light
intensity, light variation, and signal-to-noise ratio (SNR) of the
green signal. This ensures that the ROIs corrupted by noise
are removed as much as possible before the pulse extraction.
The EEMD is then taken to decompose the single-channel
green signal, which contains the strongest pulsatile information
[14], from each selected patch. And only those intrinsic mode
functions (IMFs) with the dominant frequencies falling into the
interested HR range are utilized to construct the multi-channel
signal set. This guarantees that the signal set is created using
the sensitive signals closely related to HR. The above two
procedures are expected to remove the majority of artifacts
and make the most correlated information across the signal
sets be the HR related ones. In such a way, the four signal sets
corresponding to the four optimal patches are sent to MCCA-
based JBSS to derive the underlying pulse canonical variables
(CVs). Finally, the dominant frequencies of all CVs from the
largest cross-correlation coefficients are taken to calculate the
target HR. Meanwhile, the HR continuity property is also used
to remove HR outliers for a further improved performance of
HR measurement.

The main contributions of this paper are summarized as
follows. The designed method fully takes use of the spatial
illumination variations and the strong cross correlations of
pulsatile information in different patches. It adopts reasonable
preprocessing techniques, including the use of sensitive green
signals from optimal ROIs and the selection of reliable IMFs
with EEMD, to ensure the quality of input signal sets, thereby
achieving a robust HR extraction against spatially uneven illu-
minations through MCCA. The proposed method is expected
to be useful for remote HR screening in telehealth systems,
where uneven illumination is very likely to be the main source
of noise for subjects undergoing a cooperative examination.

The rest of the paper is organized as follows. Section II
introduces related work. The main procedures of the EEMD-
MCCA method are described in Section III. The details of the
experiment setup and results are shown in Section IV. Finally,
we conclude the work in Section V.

II. RELATED WORK

A. ROI Determination and Optimization

The quality of ROI has a significant influence on the perfor-
mance of HR measurement for rPPG [15]. For instance, some
ROIs are easily blocked by hairs or beards, which contain no
pulsatile information [16]. Some ROIs can be easily disturbed
by non-rigid motions like talking or eye blinking. Besides,
due to varied distributions of facial capillaries, some ROIs like
cheeks and forehead, result in stronger pulse signals [17]. It
is also demonstrated in [17] that the skew angle between face
and light source could lead to spatially uneven illumination
across the skin surface. Consequently, the determination of
high-quality facial ROIs is of great significance to enhance
the performance of HR measurement.

In the early rPPG research, the ROI was usually determined
as a bounding box covering facial skin region. For instance,
Verkruysse et al. [14] and Lewandowska et al. [18] manually
selected a rectangle on forehead as the ROI. Lempe et al.
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Fig. 1. Flowchart of the proposed method.

[19] found that the cheek ROIs facilitated the pulse extraction
after comparing the performance of rPPG on several manually
selected ROIs. Later, Kwon et al. [20] also showed that the
forehead and both cheek ROIs were more appropriate to derive
the pulse signal with stronger strength.

According to existing studies, the optimal ROIs are usually
selected based on smaller patches from the whole forehead
or cheek regions. Quality indices are defined on all patches
to evaluate and determine the candidate ROIs. For example,
Feng et al. [21] divided a fixed ROI into non-overlapped
patches, and they selected the high-quality ones according to
both the SNR and the cross correlation (CC) coefficient of
pulse waveforms from two neighboring windows. Po et al.
[22] determined the target facial ROIs through comparing the
SNR map of rPPG pulse signals on different candidate ROIs.
Kumar et al. [23] extracted the pulse signals by weighting all
candidate rPPG signals with weight coefficients determined
from the SNR of pulse extracted on each patch. From these
works, it can be seen that the SNR is an important quality
indicator and it has often been used to obtain high-quality
ROIs. Besides SNR, Bousefsaf et al. [24] also indicated that
the lightness criteria was also a critical indicator to derive
reliable ROI for designing illumination resistant algorithms.
They introduced a way to select high-quality ROIs considering
both lightness and SNR.

B. BSS and JBSS Based rPPG Method

It is known that the pulsatile information is mixed with
specular and diffuse reflections as a linear combination [25],
[26] in RGB channels. The BSS-based methods aim to retrieve
the pulse signal according to the statistical properties of target
signals. The BSS methods can work with a single signal set or
multiple signal sets, where the latter is also called the JBSS,
which can further take use of the correlation of sources across
the multiple sets.

For a single observation set, the ICA-type BSS methods
become the mainstream. It extracts the pulse from a single set
considering the independence of source signals. The observa-
tion set of ICA is usually built from RGB signals [27], [28]
in defined ROIs. Since the quality of observation set seriously
affects the performance of BSS, the observation set can also
be built with monochrome channels from multiple ROIs [5],

[29] or a monochrome channel using the delay-coordinate
transformation [30], [31]. The ICA-based methods have an
inherent permutation issue that the orders of the extracted
components are random. However, the selection of target pulse
signal from all separated sources is not a trivial task. Besides,
the number of sources to be separated needs to be predefined
in ICA. The inconsistency between the assumed number of
sources and the actual one will also degrade the performance
of ICA.

For multiple observation sets, the JBSS [32], [33] extracts
underlying sources within each signal set while keeping a
consistent ordering of the extracted sources across multiple
signal sets. For example, Qi et al. [33] utilized MCCA to
extract the common pulse signals in multiple facial ROIs.
Similar to BSS methods, the performance of the JBSS methods
is also affected by the quality of input sets. Besides, the source
components in multiple sets need to be consistent with the
assumptions of the used JBSS method. For a special case
of two observation sets, the canonical correlation analysis
(CCA) can be used to extract the shared pulse information.
For example, Al-Naji et al. [34], [35] decomposed the green-
channel signal by the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN), and the
CCA was further taken to obtain shared pulse signals. The
quality of observation sets in [34] was effectively improved
compared to the direct usage of RGB ones. However, the
two input sets obtained from two large ROIs can be easily
contaminated with common noises, which affects the accuracy
of the results.

In this study, we introduce the EEMD-MCCA framework
to work with multiple observation sets defined from optimal
patch ROIs. We will verify that the selection of proper ROIs,
construction of data sets with IMFs from green channels, have
a great impact on the performance of JBSS. It makes the pulse
signals be more relevant while the noise signals are more
diverse across observation data sets. So the extracted signals
by MCCA are more prone to be pulse signals.

III. METHODS

The flowchart of the proposed EEMD-MCCA framework
is illustrated in Fig. 1. First, a full ROI is determined and
divided into multiple small patches. A green-channel signal is



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 2. The details of ROI selection.

then obtained through a frame-by-frame pixel averaging within
each patch. Second, the four best patches (termed as sub-ROIs)
are selected using quality indicators for high illumination
intensity, low spatial variation and high SNR. Third, the green
signal of each sub-ROI is decomposed into IMFs by EEMD
algorithm and only those with the dominant frequencies falling
into the interested HR range are retained to construct a multi-
channel signal set for each sub-ROI. All the four signal sets
are sent to MCCA to derive the CVs, which usually include
the pulses in the first group with the largest cross correlation
coefficients. Finally, the pulse signal is selected from the target
CV and the corresponding HR is estimated by fast Fourier
transform (FFT).

A. Green Signal Extraction

The Viola-Jones face detector [36] is used to get a rectangu-
lar bounding box, which is scaled to 60% to remove non-skin
areas such as background and hair. The full ROI is then divided
into N × N patches, where the four vertexes of each patch
are tracked by using the Kanade-Lucas-Tomasi algorithm [37]
along video frames. A green-channel signal is obtained by
frame-by-frame pixel averaging within each patch. It is then
detrended and band-pass filtered within [0.7 2.5] Hz for further
processing.

B. Selection of High-Quality Sub-ROIs

As mentioned above, the quality of sub-ROIs has an im-
portant influence on the rPPG performance. It is known that
average light intensity on each sub-ROI will affect the intensity
of corresponding rPPG pulse. The variations of light intensity
within a sub-ROI usually indicate uneven illuminations. These
two indicators help to identify whether the current sub-ROI
tends to be uniform with possible strong pulse. Additionally,
we also employ the SNR of the green signal as a direct
indicator of signal quality. These three indicators are combined
to determine high-quality sub-ROIs are shown in Fig. 2.

In detail, we first calculate the indicators of light intensity
and variation on a single sub-ROI as the mean and standard
deviation (SD) of the intensity channel L in LAB color
space. The mean value of channel L for each patch is then
sorted in a descending order, while that of the SD of light
variations is sorted in an ascending order. Accordingly, the
first Q(Q < N2) patches are determined respectively with the
highest intensities and the lowest light variations. The SNRs
of the green signals from those intersection patches are then

sorted in a descending order, and the first M intersected patch-
es are determined as high-quality sub-ROIs for subsequent
processing.

In this study, the whole facial ROI derived by the face
detector is divided into 4×4 patches (N equals to 4), Q equals
to 10, and M is set as 4, which means four high-quality sub-
ROIs will be determined for the following processing.

C. EEMD-MCCA algorithm
The JBSS requires signal sets composed by multiple-

channel signals. As a result, the single-channel green signal on
each sub-ROI needs to be converted into a multi-channel signal
set. The ensemble empirical mode decomposition (EEMD)
[38] is such a kind of method to decompose a non-stationary
single-channel signal into the multi-channel signals in terms
of multiple IMFs. The derivation of an IMF requires the
following two conditions: (1) the number of extreme values
and the number of zero crossing must either be equal or differ
at most by one; and (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined
by the local minima is zero [39]. The decomposed signal g
can be expressed as

g =
I∑

i=1

IMFi + rI , (1)

where IMFi is the ith IMF, and rI is the residual. Here,
each green signal is decomposed into several IMFs by EEMD,
and those IMFs with dominant frequencies falling into the
interested HR range [0.7 2.5] Hz will be retained to form
the multi-channel signal set. The purpose is to remove noisy
components for the next MCCA processing. Since the number
of retained IMFs may be different among the M signal sets,
we further pad the set with a small number of signals using
its first reserved IMF. The prepared signal sets will be taken
as the input of MCCA-based JBSS technique.

The MCCA is a method to deal with cross correlations
between multiple signal sets. Given M signal sets Xi(t) =
{x1

i (t), x
2
i (t), ..., x

K
i (t)}T, i = 1, 2, ...,M , where K is the

total number of channels within each signal set, and the
superscript T denotes the transpose operation. Each signal
set is assumed to be a linear mixture of several underlying
uncorrelated source signals as follows

Xi(t) = AiSi(t), i = 1, 2, ...,M (2)

where Si(t) = {s1i (t), s2i (t), ..., sKi (t)}T , i = 1, 2, ...,M are
the unknown sources and Ai is the mixing matrix.

Suppose yi is a linear combination for the ith signal set
Xi(t) as

yi(t) = wT
i Xi(t), (3)

where wi is the unknown combination coefficient vector.
The MCCA [13], [40] aims to maximize the correlations
of yi(t) across all sets by searching the coefficients wi for
i = 1, 2, . . . ,M. The obtained {yi(t)}Mi=1 are also known
as canonical variables (CVs). The calculation of CVs needs
to be carried out repeatedly on all sets until reaching the
dimension K. The coefficient vectors wi can be obtained
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through different types of objective functions. In this paper, we
employ the objective function ‘SSQCOR’, which maximizes
the sum of squares of all cross-correlation coefficients of CVs.
More details can be found in [13].

We finally get the de-mixing matrix Wi composed by all
of the obtained wi for the ith signal set Xi(t), such that

Yi(t) = WiXi(t), i = 1, 2, ...,M (4)

where Wi is the inverse of unknown mixing matrix Ai and
Yi(t) is the obtained approximation of sources Si(t).

D. HR Estimation
The final procedure is to determine the target CV that

contains the pulse and calculate the corresponding HR. The
pulse signals are considered to be highly correlated, while the
illumination noise is varied across among different sub-ROIs.
It implies that the target pulses are usually included within the
first group of CVs. Accordingly, for the current processing
segment, we select the candidate pulse as the one with the
highest ratio of energy around the fundamental frequency and
first harmonic in the first group of CVs. The FFT is then taken
to calculate the HR.

The above procedure can well determine most of the HR
measurements. However, there are still few outliers that de-
stroy the stability of HR measurement. For example, if the
noise components are shared in multiple input sets, it can
lead to the real HR appearing in the second group of CVs. In
order to achieve a more stable HR measurement, we further
introduce a two-step flowchart in Fig. 3 to remove outliers
according to HR continuity under the assumption that obtained
HRs do not dramatically change during a short period. The
core idea is to first find a reference HRref to determine the
outliers (Fig. 3(a)), and then replace the outliers with other
candidate HRs from the other CVs (Fig. 3(b)). The details of
the flowchart are described as below.

1) First, we determine the reference HR to identify outliers
as shown in Fig. 3(a). For a one-minute video, we get
seven segments if the processing window is set as 30
seconds with an overlapping of 5 seconds. Accordingly,
we get {HRn}7n=1 for each segment from the first group
of CVs. The absolute errors between each HRn and the
remaining ones are calculated and compared with the
predefined threshold Th1 to determine a number P . The
current HRn will be treated as a valid HR candidate to
calculate the HR reference HRref if P > Th2. Finally,
the HRref is determined as the mean value of all valid
HR candidates.

2) Second, we remove the outliers with the help of refer-
ence HRref as shown in Fig. 3(b). Similar to the first
step, we calculate absolute error between the current
HRn and the reference HRref and compare it with the
threshold Th1. If it is identified as an outlier, the HRn

will be replaced by the HRn,new obtained from the rest
CVs as the one closet with HRref .

The reliability of the reference HR in Fig. 3(a) depends on
two premises. First, most of the candidate {HRn}7n=1 need
to be valid. Second, the true HR needs to be continuous for

stationary subjects. It has been reported in [41] that the resting
HR has small variations during one minute. And we will verify
the first condition in the experiment.

In the current study, the error threshold Th1 is set to 9.0
beats per minute (bpm) in the above flowchart, while the
threshold Th2 of P is set to 3. Here Th2 = 3 implies that
the selected HRn is close to at least half of the other HR
measurements within one minute. Although the above settings
are suitable for subjects who are generally stationary, the
parameters still need to be carefully set according to actual
distributions of heart rates in different applications.

IV. EXPERIMENTS AND RESULTS

In this section, we will evaluate the proposed EEMD-
MCCA and compare it with other typical methods on the
in-house BSIPL-RPPG database and the public COHFACE
database [42] to illustrate its effectiveness. In detail, we first
introduce the experimental setup, and then the results are
presented. we also take ablation study to further understand
the influence of ROI selection and the HR continuity.

A. Experiment Setup

The BSIPL-RPPG database was collected indoors [43] with
natural light sources. With the approval of the ethics review
committee of Hefei University of Technology, 37 healthy
student subjects (24 males and 13 females) participated in
the experiment and a total of 37 videos were collected. The
subjects were asked to sit by the window which caused uneven
illuminations. During a 4.5-minute video recording, the subject
needs to stay still for the first 2 minutes and then imitate head
shaking while driving for the rest 2.5 minutes. The videos were
recorded by Logitech C920 pro HD with a resolution of 640 x
480 with a frame rate of 30 frames per second (fps). The PPG
signal was synchronously acquired at a 60 Hz sampling rate
by a Contec CMS50E pulse oximeter. All videos were stored
in the MPEG-4 format.

The COHFACE database was also employed to evaluate
the performance of our method. It contains 160 RGB videos
of approximately one minute in length collected from 40
subjects (28 males and 12 females) under two different light
conditions. One light condition employed the ceiling lights and
a 400W halogen spotlight, making the illuminations be even
on the faces of subjects. The other one was the natural light
illuminating from the window, resulting in uneven illumination
to the subject. The videos were recorded by Logitech HD
Webcam C525 with a resolution of 640 x 480 and a frame
rate of 20 fps. The reference PPG signals were synchronously
collected by BVP model SA9308M.

In the experiment, six videos from subject 24 and subject
26 in COHFACE database were excluded. The dark skin color
of subject 24 makes the processing of all the four videos from
this subject very challenging for all comparison methods we
have tried. For subject 26, the camera was shaken during video
capturing under natural light situations and the related two
videos were dropped. Consequently, there are total 154 videos
in COHFACE database employed for further analysis.
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Fig. 3. The flowchart of removing outliers according to HR continuity. (a) Calculate the reference HRref (b) Remove HR outliers.

In the BSIPL-RPPG database, we process all videos from
20 seconds to 80 seconds, while the full length of each
video is processed in the COHFACE database. The processing
segment was set as 30 seconds with an overlapping length
of 5 seconds for neighbouring windows. Accordingly, there
are total 7 segments to be processed for a one-minute video.
Finally, there are 259 video clips obtained from BSIPL-RPPG
database and 1082 video clips from COHFACE database.

The proposed EEMD-MCCA algorithm was implemented
with MATLAB R2019. Particularly, the EEMD [38] was
implemented with the open-source code from github 1. The
MCCA [13] was implemented with the open-source joint
multiset decomposition code 2.

B. Results

To verify the performance of the proposed method, we com-
pare it with some typical methods on the two databases. These
methods including the ICA [27], CHROM [26], POS [25] and
iBCG [44] implemented with the ‘iPhys’ [45]. Besides, to
show advantages over existing work, we also compare another
four methods listed as follows. All methods were run on a
desktop with Intel Core i5 processor (3.4GHz) and 8GB RAM.

(1) To verify the importance of employing multiple patch
ROIs against uneven illuminations, the EEMD-CCA is also
adopted for comparison. The EEMD-CCA has been imple-
mented with the same procedures as those of EEMD-MCCA,
except that the best two sub-ROIs are combined into one
single ROI, while the remaining two sub-ROIs are merged into
another one. The CCA is then taken to replace the MCCA in
the EEMD-MCCA.

(2) To demonstrate the superiority of JBSS over the BSS
technique, we compare the proposed method with the MRICA
(multiple-region ICA) [29], which directly applies ICA on a
signal set composed by green signals obtained from four high-
quality sub-ROIs.

(3) To verify the advantage of EEMD-MCCA for using
IMFs in MCCA, we also compare it to the MCCA method

1https://github.com/benpolletta/HHT-Tutorial/blob/master/HuangEMD/
eemd.m

2http://mlsp.umbc.edu/resources.html#Multiset

with input sets composed by RGB signals from each sub-
ROI. The latter one is termed as RGB-MCCA. Particularly,
we also implement the original MCCA method in [33] for
a comparison, which is the same as RGB-MCCA except the
selection of target pulse using a spectrum clustering (SC).

Four metrics are employed to evaluate the performance of
each method. They are the root mean square error HRrmse;
the mean absolute error HRmae; the standard deviation HRsd

of the absolute errors, and the Pearson’s correlation coefficient
r. The detailed definitions and descriptions can refer to [46].

(a) (b) (c)

Fig. 4. Examples of determining high-quality sub-ROIs under different
light conditions. (a) Natural light conditions on BSIPL-RPPG database;
(b) Good indoor light conditions on COHFACE database; (c) Natural light
conditions on COHFACE database.

1) Selection of Optimal Sub-ROIs: Fig. 4 shows an example
of selecting high-quality sub-ROIs based on the indicators
described in Section III-B. Specifically, Fig. 4(a) indicates sub-
ROIs selection under natural light conditions in BSIPL-RPPG
database, Fig. 4(b) shows the selected sub-ROIs under indoor
lighting conditions in COHFACE database, and Fig. 4(c)
shows the selected sub-ROIs under natural lighting situations
in COHFACE database. It can be seen from Fig. 4(b) that,
when the light shines evenly on the face, the high-quality sub-
ROIs are mainly determined from the forehead and both cheek
regions with rich capillaries. In contrast, the high-quality ROIs
are mainly obtained around the bright parts of the forehead and
cheek regions in Fig. 4(a) and Fig. 4(c), respectively. This is
in accordance with the fact that the natural light illuminates
from the window, making one side of the subject’s face more
bright than the other side.

2) Results of HR Estimation: The overall HR measurement
results of different methods on BSIPL-RPPG and COHFACE
databases are summarized in Table I and Table II, respectively.
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Fig. 5. The Bland-Altman plots of HR measurements on the BSIPL-RPPG database.

TABLE I
RESULTS OF DIFFERENT RPPG METHODS FOR BSIPL-RPPG

DATABASE (BEST PERFORMANCE IN BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
ICA [27] 15.56 8.78 12.85 0.40

MRICA [29] 14.27 7.93 11.86 0.51
CHROM [26] 10.69 5.31 9.27 0.60

POS [25] 11.14 5.43 9.73 0.60
iBCG [44] 26.86 21.12 16.59 0.15

EEMD-CCA 22.32 13.82 17.53 0.20
RGB-MCCA-SC [33] 26.43 19.48 17.86 0.06

RGB-MCCA 17.06 10.49 13.46 0.42
EEMD-MCCA 6.14 2.95 5.38 0.86

Particularly, existing results (denoted in italic) from some lat-
est methods [10]–[12], [47], [48] obtained on the COHFACE
database are also listed in Table II for a comparison. It can
be observed that the proposed EEMD-MCCA achieves overall
superior performance in both the two databases compared to
other methods.

In detail, the results of model-based methods including
CHROM and POS are not satisfactory in both of the two
databases. The probable reason is that the videos of these two
databases are stored in a compressed format that may degrade
the performance of model-based methods. The performance of

TABLE II
RESULTS OF DIFFERENT RPPG METHODS FOR COHFACE DATABASE:

BOTH LIGHTING AND NATURAL CONDITIONS (BEST PERFORMANCE IN

BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
ICA [27] 13.99 8.16 11.37 0.36

MRICA [29] 11.26 5.87 9.62 0.55
CHROM [26] 13.74 8.44 10.84 0.34

POS [25] 11.90 6.58 9.92 0.49
iBCG [44] 14.09 8.20 11.47 0.39

HR-CNN [47] 10.78 8.10 - 0.29
Two-stream CNN [10] 9.96 8.09 - 0.40

DeeprPPG [11] 7.06 3.07 - 0.86
Siamese-rPPG [12] 1.29 0.70 - 0.73

MOMBAT [48] - 5.89 7.38 0.62
EEMD-CCA 16.33 8.58 13.90 0.39

RGB-MCCA-SC [33] 16.03 10.17 12.41 0.24
RGB-MCCA 10.70 5.51 9.17 0.60

EEMD-MCCA 4.80 2.08 4.33 0.91

Siamese-rPPG [12] is very amazing on this database. However,
we need to indicate that all the results of learning-based meth-
ods [10]–[12], [47] have been obtained in a within-database
configuration. Namely, videos from part of the subjects were
taken for training, while the rest ones were employed for
testing.
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Fig. 6. The Bland-Altman plots of HR measurements on the COHFACE database.

The comparison with RGB-MCCA demonstrates the supe-
riority of employing IMFs decomposed from green-channel
signal to construct multi-channel single set in EEMD-MCCA,
which is more sensitive to the pulsatile information and more
robust against noise compared to the raw RGB signals. The
HRrmse and HRmae are decreased by 10.92 bpm and 7.54
bpm, respectively on the BSIPL-RPPG database, while they
are decreased by 5.90 bpm and 3.43 bpm, respectively on the
COHFACE database. Besides, the correlation coefficients r are
improved from 0.42 to 0.86 on the BSIPL-RPPG, and from
0.60 to 0.91 on the COHFACE databases.

The average results of EEMD-MCCA are also much better
compared to the EEMD-CCA, which verifies the importance
of employing multiple sub-ROIs for BSS methods depending
on source correlations. Besides, the comparison with MRICA
indicates the advantage of EEMD-MCCA over BSS method.

Since the videos from COHFACE database were recorded
under two different illumination conditions, we also summa-
rize the results under different lighting scenarios as shown
in Table III and Table IV, respectively. We can see that the
performance of different methods is all improved under good
illumination conditions compared to that of the natural light
conditions. It indicates that the illumination has a great impact
on the rPPG methods. However, the proposed method still

TABLE III
RESULTS OF DIFFERENT RPPG METHODS FOR COHFACE DATABASE

UNDER ONLY LIGHTING CONDITIONS (BEST PERFORMANCE IN BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
ICA [27] 12.63 6.42 10.88 0.48

MRICA [29] 10.52 4.95 9.29 0.61
CHROM [26] 13.31 7.69 10.86 0.39

POS [25] 10.19 4.86 8.96 0.63
iBCG [44] 13.55 7.38 11.37 0.42

EEMD-CCA 13.32 5.65 12.06 0.54
RGB-MCCA-SC [33] 14.49 8.14 11.99 0.35

RGB-MCCA 9.80 4.77 8.57 0.68
EEMD-MCCA 3.26 1.41 2.94 0.96

works well under the natural light conditions on COHFACE
database through employing reasonable treatment against spa-
tially uneven Illuminations.

The Bland-Altman plots of all methods on the two databases
are shown in Fig. 5 and Fig. 6, respectively. In detail, the
results in Fig. 5 shows that the proposed EEMD-MCCA
method obtains results more consistent with the reference
results compared to the other methods. Similar results have
also been observed in Fig. 6 for COHFACE database. The
box plots are also shown in Fig. 7 to represent the depicting
groups of RMSE of different methods through their quartiles,
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TABLE IV
RESULTS OF DIFFERENT RPPG METHODS FOR COHFACE DATABASE

UNDER ONLY NATURAL CONDITIONS (BEST PERFORMANCE IN BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
ICA [27] 15.30 10.00 11.59 0.25

MRICA [29] 12.20 6.85 9.85 0.49
CHROM [26] 14.18 9.23 10.77 0.29

POS [25] 13.47 8.38 10.55 0.33
iBCG [44] 14.64 9.06 11.50 0.36

EEMD-CCA 19.01 11.67 15.01 0.26
RGB-MCCA-SC [33] 17.52 12.27 12.50 0.11

RGB-MCCA 12.74 7.50 10.30 0.44
EEMD-MCCA 6.03 2.79 5.34 0.85
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Fig. 7. The box plots of RMSE for different rPPG methods. (a) BSIPL-
RPPG database (b) COHFACE database.

where the red line in each box indicates the median value of
RMSE obtained by the corresponding method. It can be seen
that the median RMSE for the proposed method is 2.69 bpm on
BSIPL-RPPG database and 1.59 bpm on COHFACE database,
while that of the other methods are all above 4.5 bpm. Besides,
the shorter interquartile ranges also indicate there are less
dispersed results in the EEMD-MCCA compared to the other
methods. In short, the HRs estimated by the proposed method
are more accurate on both the BSIPL-RPPG and COHFACE
databases.

Fig. 8 shows the detailed HR estimations (blue plus signs) of
the proposed method compared with the ground truth HR (red
plus signs) on all video clips. It can be seen that most of the
blue signs are coincide with the red ones, which demonstrates
the effectiveness of the proposed EEMD-MCCA method.

3) Time cost: The time cost of EEMD-MCCA method is
mainly determined by two parts, the decomposition of each
green signal with EEMD and the MCCA to extract the shared
pulsatile information from multi-channel signal sets. We have
done repetitive experiments to evaluate the computational cost
of the EEMD-MCCA algorithm. It is found that the bottleneck
for real-time computation is the complexity of EEMD. It takes
14.891 seconds while only 0.027 seconds are costed by MCCA
for processing a single sample.

However, the calculation of EEMD can be accelerated by
fast algorithms to achieve real-time performance. It has been
reported in [49] that the complexity of fast EEMD can achieve
an order of O(n log n) which is equivalent to FFT. Besides, the
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Fig. 8. The estimated HRs for all the video clips both by our proposed
method and the ground truth PPG. (a) BSIPL-RPPG database (b)
COHFACE database.

EEMD was applied sequentially for decomposing each green
signal in our existing implementation. The EEMD-MCCA
method can be further accelerated through parallel usage of
EEMD on multi-core processors.

C. Ablation study
The above results on two databases verify the superior

performance of the proposed method against spatially uneven
illuminations. To further understand the factors that affect the
performance, we take ablation study on the following aspects.
First, we check the effectiveness of employing high-quality
sub-ROIs as well as removal of outliers according to HR
continuity. Second, we further check the influence of selecting
pulses from different groups of CVs to further understand the
robustness of the proposed method.

1) Influence of Sub-ROI Selection and HR Continuity: First,
we investigate the effect of selecting high-quality sub-ROIs
and the outlier removal through HR continuity. We conduct
experiments under four different conditions as shown in Fig.
9. Particularly, the ‘woR’ here indicates without ROI selection,
which means the EEMD-MCCA is directly applied to signal
sets obtained from all 16 sub-ROIs. The ‘woC’ means the
target pulse is selected only from the first group of CVs as the
one with the highest ratio of energy around the fundamental
frequency and first harmonic. It can be seen that the EEMD-
MCCA method achieves the best performance under the case
of ‘wR-wC’ on both the two databases. The performance
degrades if either the option ‘woR’ or the option ‘woC’ is
employed. Particularly, the comparison between ‘wR-woC’
and the ‘wR-wC’ verifies the effectiveness of HR continu-
ity. Similarly, the quality metrics also improve significantly
through comparing the cases of ‘woR-wC’ and the ‘wR-wC’,
which proves the importance of sub-ROI selection.

2) Influence of Selecting HR from Different Groups of CVs:
Table V and Table VI summarize the results of HR estimation
when selecting the target HR from different groups of CVs
using HR continuity strategy. Here EEMD-MCCA(1) means
the target HR is only selected from the first group of CVs,
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Fig. 9. The experimental results under four conditions: woR-woC means without ROI selection and without HR continuity; wR-woC refers to with
ROI selection and without HR continuity; woR-wC means without ROI selection and with HR continuity; wR-wC indicates with ROI selection and
with HR continuity. (a) BSIPL-RPPG database (b) COHFACE database.

TABLE V
RESULTS OF EEMD-MCCA WITH TARGET HRS SELECTED FROM

DIFFERENT GROUPS OF CVS ON BSIPL-RPPG DATABASE (BEST

PERFORMANCE IN BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
EEMD-MCCA(1) 6.91 3.24 6.10 0.83
EEMD-MCCA(2) 6.24 3.01 5.47 0.86
EEMD-MCCA(a) 6.14 2.95 5.38 0.86

TABLE VI
RESULTS OF EEMD-MCCA WITH TARGET HRS SELECTED FROM

DIFFERENT GROUPS OF CVS ON COHFACE DATABASE (BEST

PERFORMANCE IN BOLD).

Method HRrmse HRmae HRsd r(bpm) (bpm) (bpm)
EEMD-MCCA(1) 5.04 2.20 4.53 0.90
EEMD-MCCA(2) 4.95 2.14 4.48 0.90
EEMD-MCCA(a) 4.80 2.08 4.33 0.91

EEMD-MCCA(2) indicates the target HR can be selected from
the first two groups of CVs, and EEMD-MCCA(a) means the
target HR can be determined from all the groups of CVs.

It can be seen from the two tables that the performance of
EEMD-MCCA(1) does not degrade much with the benchmark
EEMD-MCCA(a). For example, the HRrmse in Table V
slightly decreases from 6.91 bpm to 6.14 bpm, and r increases
from 0.83 to 0.86 on the BSIPL-RPPG database. The results
imply that almost all target HRs are selected in the first group
of CVs. As for BSIPL-RPPG database, there are 98.46%
(255/259) clips that the target HR is determined from the first
group of CVs. Similarly, for COHFACE database, there are
97.69% (1057/1082) clips that the target HR is obtained from
the first group of CVs. These results verify the assumption
that the most relevant sources shared among all facial ROIs
are the pulsatile signals, thereby laying the foundation for the
application of MCCA to extract the HR from the first group
of CVs.

V. CONCLUSION

In this paper, we have proposed a method of EEMD-MCCA
to estimate HR from facial videos against spatially uneven
illuminations. We have adopted two strategies to prepare
input signal sets for robustness of HR extraction in MCCA
algorithm. The high-quality sub-ROIs are firstly selected using
quality indicators defined with the illumination intensity, the il-
lumination variations and the SNR of green signal. The EEMD
is then taken to decompose the green signal from each selected
sub-ROI, where the resulting IMFs are employed to construct a
multi-channel input signal set for MCCA. According to these
two strategies, the CVs derived by MCCA with the highest
correlations are prone to be candidate pulses. The dominant
frequency of each CV is calculated by FFT, and the target HR
is determined according to the quasi-periodicity and continuity
of HR. The performance of the EEMD-MCCA method has
been evaluated on the in-house BSIPL-RPPG database and
the public COHFACE database, where the experimental results
have demonstrated the superior performance of EEMD-MCCA
over several other typical rPPG methods. Besides the ambient
light interference, the proposed method is also expected to
work for possible non-rigid motion artifacts [2] due to facial
expressions. The kind of noise is also considered to be spatially
uneven, and the EEMD-MCCA framework is also potentially
effective in such case.
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