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Electromagnetic Inverse Scattering With Perceptual
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Abstract—In this work, we introduce a learning-based method
to achieve high-quality reconstructions for inverse scattering prob-
lems (ISPs). Particularly, the proposed method decouples the full-
wave reconstruction model into two steps, including coarse imag-
ing of dielectric profiles by the back-propagation scheme, and a
resolution enhancement of coarse results as an image-to-image
translation task solved by a novel perceptual generative adversar-
ial network (PGAN). A perceptual adversarial (PA) loss, which
is defined as a perceptual loss for the generator network using
hidden layers from the discriminator network, is employed as a
structural regularization in PGAN. The PA loss is further combined
with the pixel-wise loss, and also possibly the adversarial loss,
to enforce a multi-level match between the reconstructed image
and its reference one. The adversarial training of the generator
and discriminator networks ensures that the structural features of
targets are dynamically learned by the generator. Numerical tests
on both synthetic and experimental data verify that the proposed
method is highly efficient and it achieves superior imaging results
compared to other data-driven methods. The validation of the
proposed PGAN on ISPs also provides a fast and high-precision
way for solving other physics-related imaging problems.

Index Terms—Inverse scattering,
networks, perceptual adversarial loss.

generative adversarial

1. INTRODUCTION

NVERSE scattering problems (ISPs) detect the geometric
I and constitutive parameters of unknown scatterers through
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measured scattered field, which are commonly required in many
applications [1]-[3]. The ISPs can be quickly solved by sim-
plified linear models like Born approximation method [4] and
back-propagation (BP) method [5] etc. However, these fast
methods usually have strong requirements on prior information
and they may get failure inversion due to high nonlinearity and
ill-posedness of ISPs [6]. Consequently, nonlinear iterative algo-
rithms, which solve complete full-wave models, are more robust
and have wider range of applications. There are many typical
nonlinear iterative algorithms, such as distorted Born iterative
method (DBIM) [7], contrast source inversion (CSI) [8] and
subspace-based optimization method (SOM) [9]. These methods
can achieve high-quality reconstructions, while the drawback of
this kind of methods is that they are usually time-consuming due
to high computational complexity.

The ISP algorithms need essentially to build a nonlinear map-
ping between the scattered field and the unknown constitutive
parameters of the scatterers. As known, neural network has been
verified to be a powerful tool to build nonlinear mappings. Since
the 1990 s, there have been a lot of papers [10]-[12] using
artificial neural networks (ANN) to solve ISPs. However, these
methods usually highly depend on the prior knowledge of the
scatterers [13], and thereby greatly limiting their applications.
Recently, inspired by the powerful representation capabilities of
deep neural networks (DNN) [14]-[16], the convolutional neural
network (CNN), has been successfully applied to solve ISPs,
which is denoted as the deep learning based inverse scattering
(DL-IS) methods. The DL-IS methods can be generally divided
into two categories. One type of DL-IS methods [17], [18] aim
to replace the most difficult part of traditional nonlinear iterative
algorithms with the trained neural networks. The full inversion
algorithm still follows an iterative framework. The other type of
existing DL-IS methods consider the ISPs as an image-to-image
translation problem [19], [20]. Namely, coarse input images are
firstly converted from the scattered field using some non-iterative
methods, which are further mapped through various CNNs to get
high-resolution reconstructions. We focus on the latter ones in
this paper.

Although the results of DL-IS methods are encouraging,
this type of post-processing methods are still in its infancy.
Researchers have tried various efforts to improve the results of
DL-IS methods. A direction of improvement is to adjust the input
and output of the network to introduce more useful information
or reduce the complexity of the mapping. For example, Zhang
et al. [21] introduced a hybrid input scheme to enhance the
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commonly used BP input feature map. Wei et al. [22] took the
induced current instead of the dielectric image as the input. Yao
et al. [23] proposed a two-step DL-IS method to construct the
coarse image with the first neural network and they took another
neural network for further enhancement of the resolution. The
authors also introduce a single convolutional encoder-decoder
network to directly map the scattered field to the contrast of
scatterers [24].

In addition, adjusting the objective function by adding reg-
ularization terms also has an important impact on the imaging
quality. The existing DL-IS methods usually train CNNs using
a pixel-wise loss to measure the discrepancy of generated image
and the target one [20]. This may lead to artifacts in the recon-
struction since there is lack of explicit constraints on high-level
features of images. Considering this reason, Huang et al. [25]
introduced the structural similarity (SSIM) loss combining with
the pixel-wise mean squared error (MSE) loss to enforce the
match of high-level features of the generated image with the
reference one. Differently, Ye et al. [26] proposed to use the
generative adversarial network (GAN) [27] to solve ISPs with
inhomogeneous background. The adversarial loss defined in
GAN can enforce the generator network to learn high-level
features of the target and thereby generate realistic images with
guidance from a discriminator network.

Besides the SSIM loss and the adversarial loss, the perceptual
loss is another popular way to enforce a direct match of high-
level features between the reconstructed image and its ground
truth. The high-level features are usually defined as hidden layers
of a neural network. Perceptual loss has been proven to have an
apparent effect on improving the quality of generated images
in other fields. For example, Ledig et al. [28] combined the
adversarial loss and the perceptual loss [29] to generate realistic
pictures in the image super-resolution task. Yang et al. [30]
took the GAN with a perceptual loss to solve the low-dose CT
image denoising problem. In these papers, the perceptual loss is
usually defined with hidden layers of some pre-trained networks
such as VGG-Net. In contrast, Wang et al. [31] introduced a
perceptual adversarial network (PAN) to define perceptual losses
with hidden layers from the discriminative network instead of
the ones from pre-trained networks. This effectively improves
the ability of the hidden layers to represent features of target
images compared to the ones from the pre-trained networks.

Inspired by the success of existing works, in this paper, we
propose a new DL-IS method to reconstruct scatterer profiles.
The proposed method is composed of two steps, including coarse
reconstructions of profiles from scattered field by non-iterative
methods and a further refinement through a novel perceptual
generative adversarial network (termed as PGAN). The PGAN
is composed of a U-net-like [32], [33] generator network and a
PatchGAN-like [34] discriminator network. The coarse images
obtained by the back-propagation are taken as inputs for the
generator to reconstruct realistic profiles. The discriminator
learns to differentiate the reconstructed image and the reference
profile. The perceptual adversarial loss, which is defined using
the hidden layers from the discriminator, can guide the recon-
struction of the generator through explicit feature matching.
It is combined with the pixel-wise loss, and also possibly the
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Fig. 1. The configuration of 2-D ISPs under TM illuminations.

adversarial loss, to train the PGAN networks in an adversarial
way. The loss functions are expected to enforce the generator
to learn multi-level features of the target image. The proposed
method is tested with both synthetic and experimental data. The
results verify the superior performance of PGAN over other
methods.

It should be noted that the proposed PGAN is specially
designed for ISPs, and it is different from the PAN introduced
in [31] in both network structures and loss functions. In sum-
mary, the benefits of the proposed method are listed as follows.
First, we introduce a perceptual generative adversarial network
to solve ISPs. The perceptual adversarial loss together with
the pixel-wise loss are taken to explicitly enforce a multi-level
match between the reconstructed image and the target one,
and thereby significantly improving the reconstruction quality.
Second, we compare the proposed method with several typical
GAN-based methods on different types of measurements. The
comparison results verify the advantages of the proposed method
in terms of both accuracy and generalization capability. Third,
the PGAN is potentially useful for solving other physics-based
image translation problems like the CT denoising [30] and
diffraction tomography [35] etc, which require the match of both
pixel values and high-level features.

This structure of this paper is constructed as follows. We
firstly describe the formulation of the ISPs and then introduce
the proposed PGAN algorithm in Section II. The method is then
compared with other ones for both synthetic and experimental
data in Section III. Finally, we conclude our work in Sections I'V.

1I. METHOD
A. Formulation of the Problem

The configuration of the current study is depicted in Fig. 1. For
convenience of demonstration, we consider a two-dimensional
(2-D) transverse magnetic (TM) [36] ISPs. The unknown scat-
terer is supposed to be located in a square domain of interest
(DOI) D. The relative permittivity of the lossless dielectric
scatterer is denoted as €, and the background is free space with
permittivity as €g. There are N, transmitter antennas and N,
receiver antennas located evenly surrounding the DOI.

As shown in Fig. 1, one transmitter antenna Tx emits electro-
magnetic waves, which are scattered with the unknown scatterers
in DOI D, and the related scattered fields are measured by
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the surrounding receiver antennas Rx. The transmitting antenna
illuminates the DOI D in turn from different directions. The
receiving antennas will also record the measured scattered field
sequentially. The purpose of ISP is to retrieve the unknown
relative permittivity €, of the scatterers with all the measured
scattered field. The mathematical formulations of the forward
scattering are introduced as below. For clarity, we first declare
the notations of symbols. The vectors and matrices will both be
represented in bold. In particular, if necessary, we will further use
a single bar and double bars to distinguish vectors and matrices,
respectively.

The domain D is discretized into N = M x M square sub-
units and we take the method of moments (MOM) [18] to cal-
culate the scattered field. The governing Lippmann-Schwinger
equation is discretized as

Etot — Rirc 4 éD . Z . Etot7 (1)

where the E*°? is the total electrical field in domain D. The E?"

is the incident electrical field, G p is the 2-D free space Green’s

function in D, and E is a diagonal matrix of contrast function.
Eq. (1) can be reformulated as

J=¢ (E™+Gp-J), 2)

considering the relation J = £ - E**! between the induced cur-
rent J with the total field Et°*.

The scattered field at the locations of receivers outside D can
be represented as

B =Gs-J, 3)

where E** is the scattered field on the receivers with dimension
N, x 1,and G g is the Green’s function with dimension N,. x N
to map contrast source J to scattered field E3°®.

B. The PGAN Algorithm

1) Network Structures: The existing DL-IS methods in an
image-to-image translation framework usually choose a fast
non-iterative algorithm like BP to build the coarse image x.
The use of fast BP method can save a lot of computational
time compared to the traditional nonlinear inversion methods,
which guarantees the overall computational efficiency of DL-IS
methods. Then a CNN (g such as the well-known U-net is taken
to build the nonlinear mapping between the rough input image
x and the reference image y, where 6 denotes the unknown
parameters of the network GG. A pixel-wise loss is usually taken
to optimize the parameters of the CNN. For example, the one
based on L1 norm can be defined as

L1(0) = |Go(x) =yl 4)

It is noted that the batch size is omitted for brevity. Similarly, the
other loss functions defined in this paper also follow this usage.
The readers can also refer to some latest review papers [20], [37]
for more details about the existing DL-IS methods.

This type of two-step DL-IS methods avoid directly dealing
with measured scattered field data, where the network must
spend remarkable cost to train and learn underlying wave
physics. The scattered field is converted into coarse image by BP
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Fig. 2. The flowchart of the full inversion algorithm.
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Fig. 3. The structure of the generator for PGAN.

and the ISP is solved in the image domain as an image-to-image
translation problem. This effectively reduces the difficulty of
building the neural network mapping to reconstruct scatterer
profiles. Therefore, the proposed PGAN algorithm introduced
next will also take the two-step framework for solving ISPs.

The proposed PGAN algorithm follows a flowchart as Fig. 2
under the GAN framework for solving an image-to-image trans-
lation. First, a coarse image x is constructed from the measured
scattered field through the BP method. The coarse image x is
then mapped through the generator Gg to generate image as
Go(x) which approximates the reference permittivity image y.
The discriminator Dy (x, z) is taken to guide the distribution of
generations to be consistent with the reference ones, where ¢ are
the unknown parameters of network D, and z indicates either the
generation Gg(x) or the reference y. Here the input x is taken
as a condition for the discriminator in order to pair the input and
output of the generation. The output of the discriminator is a
discrimination matrix like the one used in PatchGAN [34]. The
networks G'g and Dy are trained alternatively in an adversarial
way.

In this paper, the generator is selected as the U-net [33] shown
in Fig. 3. The discriminator is illustrated as Fig. 4.

2) Loss Functions: In PGAN method, the loss function for
optimizing generator Gg is defined as

La(8]¢) = L1(6) +vLpa(6]d), ©)

where L1 (0) is the pixel-wise loss in (4), v is the weight to bal-
ance the different terms, and L p 4(60|¢) denotes the perceptual
adversarial loss defined for Gg using Dy with fixed ¢.
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Fig. 4. The structure of the discriminator for PGAN.

The Lpa(0|¢) in Eq. (5) is defined as

Mg

Lpa(0¢) =D 2;ld;¢(x,Go(x)) — dje(x,¥)[1, (6)
j=1

where M, is the number of hidden layers used from Dy, d; ¢
represents the jth hidden layer of the discriminator network D,
and A; is the weight of each perceptual loss to balance the L,
and perceptual adversarial losses.

In order to investigate the effect of the perceptual adversarial
loss with respective to the commonly adversarial loss, we also
optimize the generator network with losses in (7),

Lc(8|¢) = L1(0) + SLa(0]¢) +vLpa(0]9), (1)

where L 4(0|¢) = ||Dg(x,Go(x)) — Dg(x,y)||1 is the adver-
sarial loss, and [ is the weight. For easy distinction, we denote
the method in (7) as PGAN-1, while the one in (5) is as PGAN-2.

As can be observed from the definitions, the Lp 4 loss can
guide the reconstructions of the generator network through
explicit feature matching, while the L 4 loss only regularizes the
learning space to enforce patches of the reconstructed image to
be overall realistic or not. The two losses are partially redundant
with each other to restrict the optimization space. However,
from a feature point of view, the use of L4 loss in PGAN-1
further restricts the reconstructed targets from the highest-level
of features compared to PGAN-2. The PGAN-1 is expected to
address challenging ISP reconstructions with higher nonlinear-
ity. However, the cost is that the training of the model becomes
more difficult. In the experiments, we will fully evaluate the
performance of PGAN-1 and PGAN-2 for ISP reconstructions
to further understand their effects.

The loss function of discriminator D is

Lp(¢l0) = % (I1Dg(x,5) = 113 + 1Dy (x, Go (%)) [13)

+[m — Lpa(¢]0)]7, ®)

where || - ||2 indicates the L2 norm, Lp4(¢|0) is the same as
Lpa(0]¢), except that the fixed parameters are 8, m is a hyper-
parameter to be assigned, and []* = max(0, -). From (8), the
third term of Lp will have zero gradient if Lp4(¢|0) > m. If
Lpa(¢|0) < m, the third term of Lp will have the value of
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Algorithm 1: Update algorithm of G and Dg.

1: Initialize the parameters @ and ¢ for Gg and D;

2:  Update Dy through minimizing (8) with fixed 8 in
Go: ¢ < & —nVeLp;

3: Update Gy through minimizing (5) or (7) with fixed ¢
inDg: 0 <0 —nVelLc;

4: Repeat steps 2 and 3 until a stop criterion reached.

m — Lpa(¢|6). Hence, the value of m is equivalent to setting
an upper limit for Lp 4(¢|0).

3) Update of Parameters: In PGAN, the Gg and Dy are
optimized alternatively. Namely, the parameters of one network
are updated under the condition that the parameters of the other
network are fixed. So finally, the updating algorithm of G and
Dy are summarized in Algorithm 1.

C. Computational Complexity

For brevity, we only estimate the computational complexity
of PGAN in the testing case, where the BP and the generator
network will be run only once to obtain the reconstruction. The
computational complexity of the proposed method includes two
parts, the complexity of using BP method to obtain a coarse input
image from scattered field is labeled as O1, and the workload
of using generator network to further enhance the resolution of
input is labeled as O.

As mention above, the domain D is discretized into N =
M x M square subunits. The computational complexity for BP
method is mainly dominated by computing G p - J in Eq. (2). If
fast Fourier transform (FFT) is applied in the matrix-vector mul-
tiplication, the computational cost of BP is Oy (N; M? log M?)
[32], where NN, is the number of incidences.

The computational cost of networks is composed of basic op-
erations like convolutions, activation function, and pooling etc.
Particularly, the complexity is dominated by the convolutions
among above operations. For a convolutional operation, suppose
the number of the input feature maps and output feature maps
are (); and @), respectively. The computational complexity in
the convolution layer of the generator network is in the order of
OQ(MJ%K]%QZQO) [32], [38], where My x M; is the size of the
feature map and Ky x Ky (Ky = 3 in this paper) is the con-
volution kernel size. It is also noted that, all the learning-based
methods in Table II take similar computational cost because we
use the same network structure.

III. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we choose five examples including both
synthetic and experimental data to verify the effectiveness of
the proposed algorithm. The Modified National Institute of
Standards and Technology (MNIST) [39] data set is taken to
train the model for all examples. In the testing phase, we test
the trained model for both within-database and cross-database
cases.

The proposed methods are compared with some other meth-
ods, including the BP, the U-net, the pix2pix [34] and the
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original PAN methods [31]. The loss functions of generators
in different methods are listed in Table II as a reference. In
order to quantitatively evaluate the reconstruction accuracy of
all methods, the structure similarity measure (SSIM) in Eq. (9)
and the root-mean-square error (RMSE) in Eq. (10) are taken as
the quality metrics. Namely,

Cugpy + C1) 209y + Ca)
(12 + 13 +Cr) (03 +03+Co)

where y and y are the reconstructed and true relative permittivity
profiles, respectively, 1, denotes the mean of y, crf, is the
variance of y, and oy, indicates the covariance of y and y. The
C4 and Cy are small constants to avoid zero in the denominator,
where C; = (KL)% and Cy = (K3L)? with K; = 0.01 and
K5 = 0.03 as two hyperparameters, and L as the dynamic range
of pixel values of the target image y. And

1 M M
RMSE = NZZ

m=1n=1

SSIM(¥,y) =

€))

2
, (10)

T _ t
er;m,n 61’;m,n
t

Er;m,n

where €7, ,, and e;‘;;m)n are the reconstructed and true relative
permittivity of the unknown scatterers, respectively, and N =

M x M is the total number of small subunits over the DOI.

A. Configuration of the Scattering System

We test the trained model with five examples. In the first four
synthetic examples, the DOI is chosen as a square domain with
the size of 2.0 m x 2.0 m. The frequency is set as 400 MHz, and
there are 16 linearly polarized transmitters and 32 line receivers
located evenly over the circle at radius of R = 3.0 m. The last
experimental example is based on experimental data provided
by Institute Fresnel (Marseille, France) [40]. For each incidence,
we calculate the scattered field using the MOM method, where
DOI is discretized into 100 x 100 grids. To avoid the inverse
crime, the grids used for reconstruction are changed to 64 x 64.

B. Training Details

The MNIST [39] data set is used as the training data for
all examples. We randomly select 5000 images from MNIST
as the training set and another 2500 images as the validation
set. A random circle with radius from 0.1 m to 0.5 m is also
incorporated into each digit to improve the model generalization
capability [22]. Meanwhile, each digit is randomly rotated with
an angle between —170° and 170° to account for the spatial
diversity of scatterers. The scatterers in the training stage are
assumed to be lossless dielectrics with relative permittivity e,
randomly distributed between 1.5 and 2.5, and the background
is free space for all examples.

The model is trained using the Adam optimization method
with the exponential decay rates setas 5, = 0.9 and 5> = 0.999,
respectively. Some other hyperparameters used for training are
listed as follows. The batch size is taken as 1 and the model is
trained for 40 epochs. The learning rate is initially set to 0.0002
for the first 20 epochs and it sequentially decreases to zero from
the 21st epoch to the last epoch.

The hyperparameters are set as follows. The number of hidden
layers M, is set to 1 to define the Lp4 loss from Dg. This is
because the scatterer images in this study are relatively simple
compared to natural images. Specifically, the second layer of D
is selected in the experiments as shown in Fig. 4. Meanwhile, the
weight parameterA; in L p 4 is set to 4.0 and the hyper-parameter
m in Lp is set as 0.2. The  and ~ are set to 0.01 and 1.0,
respectively, in all methods as listed in Table II.

The code is prepared with PyTorch 1.3 and it is trained and
tested on a server with 3.40 GHz Intel(R) Core(TM) i7-6800 K
CPU and GeForce GTX 1080Ti GPU. In the training stage, it
takes about 3.45 hours to train the proposed networks.

C. Within-Database Test: Synthetic Data

In the first example, we test the trained model with another
1500 images randomly selected in MNIST data set. In addition,
10% Gaussian white noise is added to the scattered field in the
test set.

The reconstruction results of Test#1 to Test#4 are shown in
Fig. 5, respectively. Meanwhile, the SSIM and RMSE of the
compared methods are presented in Table I. From Fig. 5 and
Table I, we can see that all data-driven methods have obtained
good results, while the PGAN-1 and PGAN-2 methods have
achieved better imaging quality in terms of both SSIM and
RMSE. In detail, the reconstructed results of the PAN are
worse than the other learning-based methods. It indicates that
the use of the pixel-wise loss is necessary for physics-related
reconstruction task. The comparison results of PGAN-1 and
pix2pix methods, and also the comparison between the PGAN-2
and the U-net methods, indicate that the addition of Lp 4 loss
enhances the quality of reconstruction for ISPs. For this testing
example, the performance of PGAN-2 is slightly better than that
of PGAN-1, which indicates the simultaneous use of adversarial
loss is not necessary for simple ISPs.

It only takes about 0.86 seconds to achieve a single recon-
struction during the testing stage. In detail, the BP takes about
0.14 seconds, while the networks takes about 0.72 seconds.
In comparison, the conventional subspace optimization method
(SOM) running with 50 iterations takes 39.37 seconds to recon-
struct a single case. Regarding memory requirements, the GPU
memory usage is about 1.33 G during training, and meanwhile,
the computer memory usage is 2.66 G.

D. Cross-Database Test: Synthetic Data

In order to verify the model generalization capability of the
proposed methods, we also test the trained model with more
challenging examples in a cross-database way. In the following
three examples, we use exactly the same model trained in the
first example to reconstruct the scatterer. All the other settings
also keep the same. The results are shown as below.

1) Complex Profiles: In the second example, we test the
trained model on scatterers with complex profiles as shown in
Fig. 6, where double rings, double circles, letter P and “Austria”
profiles [41] are reconstructed in Test#5-Test#8, respectively.
The permittivity of all scatterers in Fig. 6 is 2.0. The error metrics
of reconstructions are summarized in Table III. We can see that
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Reconstruction results of Test#1 to Test#4 from the MNIST data set with 10% Gaussian noise.

TABLE I
ERROR METRICS OF RECONSTRUCTION RESULTS FOR 1500 TESTING SAMPLES FROM MNIST DATA SET BY U-NET,
PIX2pP1X, PAN, PGAN-1 AND PGAN-2 IN FIG. 5

Method Test#1 Test#2 Test#3 Test#4 1500 MNIST
SSIM [ RMSE | SSIM | RMSE | SSIM | RMSE | SSIM | RMSE | SSIM | RMSE
U-net 0.82 0.17 0.85 0.19 0.84 0.09 0.84 0.20 0.87 0.14
pix2pix 0.83 0.15 0.79 0.22 0.85 0.09 0.85 0.20 0.85 0.14
PAN 0.81 0.16 0.81 0.22 0.82 0.10 0.83 0.20 0.82 0.15
PGAN-1 0.81 0.16 0.86 0.17 0.88 0.08 0.89 0.15 0.87 0.12
PGAN-2 0.85 0.13 0.86 0.16 0.88 0.07 0.89 0.14 0.88 0.12
TABLE II

THE LOSS FUNCTIONS OF GENERATOR (Gg IN DIFFERENT METHODS

[ Method | U-net | pix2pix

[ PAN [ PGAN-I [ PGANZ |
[ GLoss | Ly

| Li +BLa | BLa +7Lpa | L1 + BLa +7Lpa | L1 +7Lpa |

the PGAN-1 and PGAN-2 have achieved similar performance
in all these cases and both of the two methods outperform the
comparison ones. For simple profiles (Test#6), the PGAN-2
achieves the best imaging results, while PGAN-1 method has

better reconstructions for relatively complex profiles (Test#5
and Test#8). In general, the PGAN-1 and PGAN-2 methods have
achieved better imaging quality compared with other methods. It
indicates that the perceptual adversarial loss can also effectively
enhance the reconstruction quality of complex profiles.

2) High Noise Interference: In the third example, we investi-
gate the model generalization capability considering high-level
noise interferences on the measurements. We conduct the test
using the “Austria” profile with a relative permittivity of e,
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Fig. 6. Reconstruction results of complex profiles with the relative permittivity of 2.0 and 10% noise levels.
TABLE III
ERROR METRICS OF RECONSTRUCTION RESULTS IN FIG. 6 FOR TEST#5-TEST#8
Method Test#5 Test#6 Test#7 Test#8
SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
U-net 0.60 0.23 0.84 0.15 0.78 0.21 0.72 0.19
pix2pix 0.61 0.22 0.85 0.14 0.77 0.18 0.73 0.19
PAN 0.60 0.22 0.79 0.16 0.75 0.21 0.68 0.20
PGAN-1 0.67 0.20 0.85 0.13 0.81 0.17 0.77 0.16
PGAN-2 0.65 0.22 0.88 0.12 0.81 0.17 0.76 0.17

as 1.5. Meanwhile, 10%, 20%, 25% and 30% white Gaussian
noises are added respectively to the scattered field to test the
robustness of the model. The reconstruction results are shown
in Fig. 7 and the corresponding error metrics are summarized
in Table IV. It can be seen that the PGAN-1 and PGAN-
2 outperform the other comparison methods under different
noise levels. Specially, the performance of PGAN-2 is even
better than that of PGAN-1 in this example (¢, = 1.5), which
is different from the case in Test#8 (¢, = 2.0). In short, this
example proves that the proposed methods maintain a good

generalization capability of the trained model under high noise
interferences.

3) Large Permittivity Range: In the fourth example, we test
the proposed methods in a large permittivity range. The relative
permittivity of a star profile for Test#13 to Test#16in Fig. 8is 1.5,
2.0, 2.5 and 3.0, respectively. The corresponding error metrics
are summarized in Table V. We can see that the imaging results
of the proposed methods are similar as the U-net for Test#13 and
Test#14 with small permittivities. And the PGAN-1 and PGAN-
2 outperform the comparison ones in Test#15 and Test#16, where
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Fig. 7. Reconstruction results of “Austria” profiles under different noise levels. Test#9 to Test#12 are obtained with 10%, 20%, 25% and 30% white Gaussian
noise, respectively. The first line shows the ground truth images (left) and the reconstructed result (right) for BP method with 10% noise.

TABLE IV
ERROR METRICS OF RECONSTRUCTION RESULTS IN FIG. 7 FOR “AUSTRIA” PROFILES UNDER DIFFERENT NOISE LEVELS
Method Test#9 Test#10 Test#11 Test#12
SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
U-net 0.86 0.07 0.81 0.08 0.76 0.10 0.75 0.10
pix2pix 0.82 0.08 0.80 0.09 0.75 0.10 0.75 0.10
PAN 0.74 0.09 0.73 0.09 0.74 0.09 0.69 0.10
PGAN-1 0.86 0.08 0.83 0.08 0.80 0.09 0.77 0.10
PGAN-2 0.89 0.06 0.85 0.07 0.82 0.08 0.79 0.09
TABLE V
ERROR METRICS OF RECONSTRUCTION RESULTS IN FIG. 8 FOR TEST#13-TEST#16
Method Test#13 Test#14 Test#15 Test#16
SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
U-net 0.93 0.05 0.92 0.10 0.80 0.30 0.81 0.33
pix2pix 0.91 0.06 0.91 0.10 0.81 0.28 0.81 0.30
PAN 0.86 0.08 0.87 0.13 0.74 0.29 0.76 0.29
PGAN-1 0.92 0.07 0.92 0.09 0.83 0.25 0.83 0.26
PGAN-2 0.92 0.06 0.93 0.09 0.84 0.25 0.84 0.27

the permittivity is high. It shows that the use of the perceptual
adversarial loss in the proposed methods can still effectively
improve the reconstruction quality for more challenging cases
with high relative permittivities.

However, the results also indicate that the reconstruction qual-
ity of all methods drops quickly when the relative permittivity

increases to 3.0. The reason is that the BP reconstruction in the
first step cannot fully handle such high nonlinearity. This has also
been observed when we test other profiles with permittivity as
3.0. More powerful coarse image reconstruction method needs
to be developed to address the nonlinearity, which can ease the
training difficulty of neural network in the second step.
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Fig. 9. Reconstruction results of “FoamDielExt” profiles at 3 GHz with (a)
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BP (b) U-net (c) pix2pix (d) PAN (e) PGAN-1 (f) PGAN-2.

E. Cross-Database Test: Experimental Data

Finally, we also validate the effectiveness of the proposed
methods using experimental data measured by Institue Fres-
nel [40]. A “FoamDielExt” profile as shown in Fig. 10 is
considered here with a TM case. The “FoamDielExt” profile
consists of two cylinders, where the blue foam cylinder has a

Fig. 10. The “FoamDielExt” profile from Fresnel experimental data.

diameter of 80 mm with €, as 1.45 £ 0.15, and the yellow plastic
cylinder has a diameter of 31 mm with ¢, as 3 &= 0.3. There are
8 linearly polarized transmitters and 241 co-polarized receivers,
and the distance from the transmitter or receiver to the centre of
the target is 1.67 m.

In this example, we use the same MNIST training profiles as
the above synthetic examples, including the range of relative
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TABLE VI
ERROR METRICS OF RECONSTRUCTION RESULTS IN FIG. 9 FOR
EXPERIMENTAL DATA

Method SSIM RMSE
U-net 0.87 0.18
pix2pix 0.86 0.17
PAN 0.82 0.22
PGAN-1 0.86 0.18
PGAN-2 0.89 0.15

permittivity €, as those in the Section III-C, except that we
change the frequency from 400 MHz to 3 GHz to be consistent
with the experimental data. Accordingly, the size of DOI is also
changed from 2.0 m x 2.0 m to 0.2 m x 0.2 m. In this example,
all parameters of the perceptual loss are consistent with the above
synthetic examples. But we need to retrain the model because
of the different configurations and experimental settings in this
example.

The reconstructed results of the “FoamDielExt” profile are
shown in Fig. 9. Meanwhile, the SSIM and RMSE metrics of
all methods are summarized in Table VI. It can be seen that
the PGAN-2 achieves much better imaging quality, especially
for the reconstruction of the large circle, in the experimental
data. And the PGAN-1 has obtained similar results as the U-
net and pix2pix methods. It also validates from this example
that the proposed methods are effective and have good gener-
alization capability when dealing with real inverse scattering
data.

In summary, all the above results verify that the perceptual
adversarial loss can effectively make the generator to explicitly
learn the feature information of scatterers, and thereby enhanc-
ing the quality of reconstructions. The PGAN-2 method has
achieved overall the best imaging quality for most cases. In
contrast, the PGAN-1 may still outperform the PGAN-2 in few
challenging cases due to the extra use of an adversarial loss.
The simulation time of the PGAN methods in reconstructing a
64 x 64 image is around 0.86 seconds.

IV. CONCLUSION

In this paper, we have proposed a new deep learning-based
method to solve ISPs with perceptual adversarial networks
(PGAN). The BP method is employed to reconstruct a rough
initial image, which is served as the input of the PGAN. The
loss function of PGAN is composed by the perceptual adversar-
ial loss, combined with the pixel-wise loss, and also possibly
the adversarial loss, to enforce a multi-level match of pixels
and features between the reconstructed and reference images.
The comparisons of the proposed method on both synthetic
and experimental data validate that the proposed PGAN can
effectively improve the reconstruction performance in terms of
both the accuracy and the generalization capability. Although we
only use one hidden layer to define the perceptual adversarial
loss in this paper, more hidden layers can also be employed for
imaging complex targets in medical imaging and non-destructive
testing.
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