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Abstract—This paper proposes a learning-based non-iterative
method to solve electromagnetic (EM) scattering problems uti-
lizing pix2pix, a popular generative adversarial network (GAN).
Instead of calculating induced currents directly from a matrix
inversion, a forward induced current learning method (FICLM)
is introduced to calculate the induced current through a neural-
network mapping. The scattered fields can be further calculated
through a multiplication of the Green’s function with the predict-
ed induced currents. Inspired by wave physics of scattering prob-
lems, we have designed three kinds of input schemes, covering
different combinations of the given incident field and permittivity
contrast, to evaluate the performance of the FICLM model
under both single-incidence and multi-incidence cases. Numerical
results prove that the proposed FICLM outperforms the method
of moments (MoM) in terms of both computational speed and
accuracy by use of reference data with a higher precision. The
FICLM with the direct sum of permittivity contrast and a so-
called Born-type induced current, achieves the best calculation
accuracy and generalization capability compared to the other two
inputs. The comparison with other types of neural networks, such
as U-net, also demonstrates the superior performance of FICLM
for dealing with complex scatterers due to the use of adversarial
framework in pix2pix. The proposed method paves a new way
for the fast solution of EM scattering problems through deep
learning techniques.

Index Terms—Electromagnetic (EM) scattering, forward in-
duced current learning method (FICLM), Generative adversarial
network (GAN), induced currents, method of moments (MoM).

I. INTRODUCTION

FAst and accurate solution of electromagnetic problems
plays a crucial role in wireless communication, geo-

physics, biomedical imaging, and so on [1]–[5]. However,
the solution of most electromagnetic problems, governed by
Maxwell’s equations, cannot be achieved analytically and
should rely on various numerical methods. Therefore, the
research area of computational electromagnetics (CEM) de-
velops rapidly in recent years. Categorized by the forms of
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Maxwell’s equations, the CEM methods can be generally
divided into two classes: the integral equation based and the
partial differential equation (PDE) based ones [6]–[9]. The
PDE-based CEM methods include finite difference method
(FDM) [10], [11] and finite element method (FEM) [12]
etc. The integral-equation-based CEM methods mainly consist
of boundary element method [13] (BEM) and method of
moments (MoM) and their variants [14], [15] etc.

Since CEM methods solve the Maxwell’s equations nu-
merically, the computational complexity is one of the most
concerned points for a given method. For example, the imple-
mentation of conventional iterative solver for MoM requires
O(N2) computational and memory complexities, where N is
the number of unknowns. To reduce computational complexity,
various fast iterative approaches based on the MoM have been
proposed, which are widely used in the electrically large EM
scattering problems, e.g., adaptive integral method (AIM) [16],
the precorrected fast Fourier transform (pFFT) [17], multi-
level fast multipole algorithm (MLFMA) [15], [18], and the
multilevel Greens function interpolation method (MLGFIM)
[19], [20]. Computational complexities of these approaches
are reduced to O(N logN). Although great progresses have
been achieved, obtaining full-wave solution with those fast
methods is still a time-intensive and resource-consuming task.
Therefore, efficient computational electromagnetic solvers that
can solve problems in realtime are still urgently needed.

In addition to traditional fast algorithms, some machine
learning-based CEM algorithms, such as artificial neural net-
works (ANN) [21], [22] and least square support vector ma-
chine (LS-SVM) [23], have also been proposed to accelerate
the CEM calculations. The learning-based CEM approach-
es essentially approximate some complex mapping through
various machine learning techniques. The mapping is then
learned from a set of training data to fit the model. Since
the time-consuming part is replaced by a fast learning model,
the computational complexity of corresponding CEM method
is therefore reduced. A good summary of traditional machine
learning based CEM methods can be found in [24]. However,
owing to the limited model fitting capability and poor hardware
resource, the learning-based CEM methods have not received
much attention in early stage.

Recently, inspired by the great success of deep learning
techniques in computer vision and image processing areas
[25], [26], the deep neural networks (DNNs) have been applied
to solve some electromagnetic problems [27], such as radar
and remote sensing [28], [29], and electromagnetic imaging
problems [30]–[33]. As expected, some researchers also have
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tried to devote themselves on solving the Maxwell’s equa-
tions (or EM scattering problems) with the DNN considering
its strong approximation ability for nonlinear mappings. For
example, Tang et al. applied the deep learning technique to
build a three-dimensional (3-D) electrostatic solver in [34] and
Khan et al. [35] investigated the application of deep learning
technique to predict the low-frequency magnetic field solution
of Maxwell’s equations. The results obtained by them have
demonstrated that the solvers based on deep learning methods
have achieved remarkable performance in terms of both the
prediction accuracy and computational time.

In this paper, we try to introduce a new deep learning
based method to solve EM scattering problems for a dielectric
scatterer located in a predefined spatial domain. The basic
idea of our proposed method is to accelerate the calculation of
induced currents in MoM. Apparently, the majority calculation
of MoM comes from solving the induced current in the state
equation built on the whole computational domain [8]. Instead
of a direct solution of matrix equation, the proposed forward
induced current learning method (FICLM) tries to learn the
mapping between the unknown induced current and the given
inputs. Physically speaking, the dot product of permittivity
contrast ¯̄χ with an incident field ¯̄Einc in the computational
domain, i.e., ¯̄χ · ¯̄Einc, can be considered as the Born-type
induced current. They have the same size and non-zero support
as the solution domain of desired true induced current ¯̄J . The
inputs and the output induced current are all can be considered
as the pixel-based images, which share the same pixels in the
solution domain. The maps of permittivity contrast, the Born-
type induced current, and the true induced current can all be
converted to their respective pixel-based images. Therefore,
the construction of induced current resulted from given inputs
can be considered as an image translation problem in image
domain. The pix2pix model [36], a variant from Generative
Adversarial Networks (GAN) [37], is a popular framework
to solve the image translation problem in computer vision
community. Therefore, it is introduced here to approximate
the mapping of induced current ¯̄J . Then, the electromagnetic
fields can be calculated through a convolution of the Green’s
function with the obtained induced current from the pix2pix
model.

According to the physical insights of electric field integral
equation (EFIE), as discussed in detail in Section II, three
different input schemes ( ¯̄χ, ¯̄χ · ¯̄Einc and their combination or
direct sum) are proposed to evaluate the performance of the
learning-based method under both single-incidence and multi-
incidence cases. In summary, the main contributions of this
paper are summarized as follows:

1. FICLM, a data-driven non-iterative learning based elec-
tromagnetic scattering method, is proposed to solve the EM
scattering problems for a dielectric scatterer located in a
predefined spatial domain. Numerical tests have shown that the
proposed FICLM outperforms the traditional MoM in terms of
both the computational efficiency and calculation accuracy by
use of reference data with a higher precision.

2. Three different input schemes are introduced and com-
pared for the FICLM method under both single-incidence and
multi-incidence cases. We prove physically and numerically

Fig. 1. Geometry of EM scattering problems with the two-dimensional (2-D)
transverse magnetic (TM) case. Here Tx and Rx represent the transmitting and
receiving antennas, respectively, which are all distributed on the measurement
domain S.

that the FICLM with a combined input ¯̄χ
⊕

¯̄χ · ¯̄Einc , has the
best robustness and generalization capability compared to the
other two inputs.

3. The proposed FICLM method uses a pix2pix GAN model
to approximate the mapping of induced current instead of
the commonly-used convolutional neural network. This further
enhances the capability of FICLM to predict induced currents
for complicated profiles.

The paper is organized as follows. In Section II, the forward
induced current learning method (FICLM) for the solution of
EM scattering problems is introduced. In Section III, Several
benchmark numerical tests are given to verify the interests of
proposed methods. A conclusion follows in Section IV.

II. FORWARD INDUCED CURRENT LEARNING METHOD
(FICLM)

A. Formulation of the forward EM scattering problems

In this section, the forward electromagnetic scattering prob-
lem model with the 2-D transverse magnetic (TM) case is
introduced and time harmonic fields are deduced with exp(-
iωt) assumption. Note that although the forward problem
introduced here is under a 2-D configuration, it can be easily
extended to 3-D cases. The configuration of the EM scattering
problems is depicted in the Fig. 1. (Actually, the geometry
for the EM scattering problems are set for inverse scattering
problems [6]).

The computational domain Ω is composed by a free s-
pace background with permittivity ε0, permeability µ0 and
the scatterers with relative permittivity εr(r). And the wave
number of the homogeneous background medium is denoted
as k0 = ω

√
ε0µ0. There are Ni transmitting antennas located

at rip with p = 1, 2, ..., Ni on the observation domain S
to illuminate the computational domain Ω sequentially. After
the incident waves interacted with the scatterers in the com-
putational domain, the scattered fields are measured by the
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Fig. 2. The overall flow chart of the scheme using the proposed FICLM (p denotes the index of incidence field, the total number of incidences Ni>1
denotes the multi-incidence case and Ni = 1 means the single incidence case, which can be considered as a special one of the multi-incidence case). ⊕
denotes the direct sum operator for the input channels and ⊗ denotes the multiplication operator.

receiving antennas located at rsq with q = 1, 2, ..., Nr. Here
Nr denotes the total number of receivers for each incidence.

As opposed to the inverse scattering problems, which are
aimed to retrieve the shapes, locations, electric constitutive
parameters of the unknown scatterers, the aim of the forward
electromagnetic problem is to get the scattered fields with the
information of the scatterers in the computational domain and
the incidences. Herein, the integral equation based MoM is
used for the calculation of the scattered fields.

The interaction of the scattering behavior in the Ω can be
described with the electric field integral equation (EFIE) [8],
[9] and the total electric field in the Ω is expressed as

Etot(r) = Einc(r) + k2
0

∫
Ω

G(r, r
′
)χ(r

′
)Etot(r

′
)dr

′
, r ∈ Ω

(1)
where Etot(r) and Einc(r) are the total and incident electric
fields, respectively and r and r

′
denote the positions of field

point and source point, respectively. G(r, r
′
) = i

4H
(1)
0 (k0|r−

r
′ |) represents the 2-D Green’s function in free space, where
H

(1)
0 (k0|r−r

′ |) is the first-kind zeroth-order Hankel function
and χ(r

′
) = εr(r

′
)− 1 is the contrast function. The induced

current J(r
′
) can be defined as J(r

′
) = χ(r

′
) · Etot(r

′
).

In the observation domain S, the scattered field Esca(rsq)
measured by a receiver at position rsq , is also governed by the
EFIE with the induced current J(r

′
) as

Esca(rsq) = k2
0

∫
Ω

G(rsq, r
′
)J(r

′
)dr

′
, rsq ∈ S. (2)

According to [8], the MoM is used to discretize (1) and (2).
For convenience, the Ω is supposed to be rectangular in order
to implement the conjugate gradient fast Fourier transform
(CG-FFT) scheme for a fast calculation of scattered fields
[38], [39]. The Ω is discretized into M small rectangular cells
centered at rn1,n2

with M1, M2 being the number of cells
along the x and y direction (1 ≤ n1 ≤ M1, 1 ≤ n2 ≤ M2,
and M = M1 × M2), respectively. If the discrete cell is
small enough, e.g., less than one tenth wavelength, the induced
current and the total electric field can be assumed to be
constant. Therefore, the corresponding EFIE for (1) can be

discretized as,

Etot
n1,n2

= Einc
n1,n2

+

M1,M2∑
n
′
1=n

′
2=1

GD;n1,n2;n
′
1,n
′
2
Jn′1,n

′
2

(3)

where subscript n1, n2 denote the indexes of the cell and
Etot

n1,n2
, and Einc

n1,n2
denote the total and incident electric fields

at rn1,n2
, respectively, and Jn′1,n

′
2

denotes the induced current
source. GD indicates the integral of Green’s function operator
mapping the induced current to the scattered fields in the Ω
and the analytical expression of GD;n1,n2;n

′
1,n
′
2

over the cells
can be found in [6], [8].

Taking into account of all cells in the Ω, (3) can be written
in a matrix form

Ētot = Ēinc + ¯̄GD · J̄ (4)

where Ētot = [Etot
1 , Etot

2 , ..., Etot
M ]T , Ēinc =

[Einc
1 , Einc

2 , ..., Einc
M ]T , J̄ = [J1, J2, ..., JM ]T , the size

of the ¯̄GD is M ×M .
The discretized induced current distribution on all cells can

be defined as
J̄ = ¯̄χdiag · Ētot. (5)

where ¯̄χdiag is a diagonal matrix with each element on the
diagonal corresponding to the contrast function of the cell
located at rn1,n2 . Substituting (4) into (5), we can get

J̄ = ¯̄χdiag · (Ēinc + ¯̄GD · J̄). (6)

This is the so-called the state equation.
Similarly, the scattered fields in the observed domain S

governed by (2) can be discretized as,

Ēsca = ¯̄GS · J̄ , (7)

where Ēsca = [Esca(rs1), Esca(rs2), ..., Esca(rsNr )]
T , ¯̄GS is

the Green’s function operator with the dimensions of Nr×M
(the coefficient, i.e., k2

0 , is included in the formula of ¯̄GS ),
describing the relationship between the induced current source
in the Ω to the scattered fields in the measurement domain S.
Eq. (7) is the so-called the data equation.

The conventional MoM firstly solves the induced current J̄
using the following equation

J̄ = (̄̄I− ¯̄χdiag · ¯̄GD)−1 · ( ¯̄χdiag · Ēinc). (8)
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where ¯̄I is the identity matrix. The scattered field Ēsca is then
calculated through (7) once the J̄ is obtained from (8).

It is clearly observed from (8) that intensive computational
burden of MoM lies in the calculation of J̄ . However, the
computation of the inverse matrix ¯̄Q = (̄̄I− ¯̄χdiag · ¯̄GD)−1 is
especially burdensome when the Ω is electrically large. Herein,
in order to implement the solution efficiently, the CG-FFT
scheme in [39] is used to get the induced current.

B. Forward induced current learning method

Herein, in order to connect with the proposed method by
image translation solution, all the solution vectors above are
reshaped into the pixel-form matrixes. And these pixel-form
matrixes, i.e., ¯̄χ, ¯̄Einc

p , and ¯̄Jp (p = 1, 2, ..., Ni), have the same
size of M1×M2 and the same pixels in the solution domain.
Here p denotes the index of incidence field, and in a special
case Ni = 1 means the single incidence case.

It is observed from (8) that the induced current is uniquely
determined by ¯̄χ and ¯̄χ · ¯̄Einc

p . And ¯̄Jp, the 2-D induced
current distribution, has the solution domain that is same as
the non-zero-value support of ¯̄χ and ¯̄χ · ¯̄Einc

p . In other words,
instead of directly calculating the induced current ¯̄Jp from (8)
by traditional CEM methods, we can use the deep learning-
based method with the concept of image translation to obtain
the unknown induced current ¯̄Jp through mapping the known
inputs ¯̄χ and ¯̄χ · ¯̄Einc

p . The inputs, i.e., ¯̄χ and ¯̄χ · ¯̄Einc
p and

output ¯̄Jp are all pixel-based “images” and they share the same
pixels in the solution domain. This proposed solution method
is a typical image-to-image translation process, which can be
realized by a GAN framework as illustrated in Fig. 2. Then
the output induced current is used to calculate the scattered
field.

Inspired by this relationship, we take a famous deep
learning-based image translation method, the pix2pix model,
to obtain the induced current source ¯̄Jp directly from input
images ¯̄χ and ¯̄χ · ¯̄Einc

p . This is a data-driven method, where
DNNs (generator G and discriminator D) are trained to learn
the nonlinear mapping between inputs and outputs. Since the
training stage is offline and the DNN calculation is GPU-
accelerated, the simulation time of the induced current in MoM
can be significantly reduced.

The overall flowchart for the solution of scattered fields is
depicted in Fig. 2. The entire procedure consists of two steps.
The first step aims to get the induced current with pix2pix
model and then in the second step the scattered field can be
obtained through a multiplication of the Green’s function ¯̄Gs

with the predicted induced currents in (7). The input of the
neural network comes from the known information, i.e., the
contrast function ¯̄χ and the incident field ¯̄Einc

p in the com-
putational domain. In the pix2pix model, three schemes with
different input information, i.e., ¯̄χ, ¯̄χ· ¯̄Einc

p and ¯̄χ
⊕

¯̄χ· ¯̄Einc
p are

proposed and compared. The pix2pix model is firstly trained
with training sets and then is tested on the testing sets. The
training data set is composed by paired inputs and outputs,
which can be obtained by the MoM with CG-FFT.

1) The input schemes of FICLM

The purpose of the FICLM is to calculate the induced
currents according to (8) from the knowledge of the scattering
process with the pre-defined physical operator ¯̄GD and the
input variables, e.g., ¯̄χ and ¯̄Einc

p . In order to express the char-
acteristic relationships of (8) completely, the input of neural
network should contain as much prior information as possible.
Herein, there are three input schemes proposed, i.e., ¯̄χ, ¯̄χ· ¯̄Einc

p

and ¯̄χ
⊕

¯̄χ· ¯̄Einc
p . The third input ¯̄χ

⊕
¯̄χ· ¯̄Einc

p , which consists
of 4 channels after spitting ¯̄χ and ¯̄χ · ¯̄Einc

p into their real and
imaginary parts, covers all prior information and ensures that
one-to-one corresponding relationship can be achieved. We
will evaluate the performance and limitation of different inputs
through numerical simulations and comparisons.

When the scatterers are weak (low contrast and/or elec-
trically small size), ¯̄Jp,0 = ¯̄χ · ¯̄Einc

p can be considered as
an initialization of the induced currents according to Born
approximation. Besides the physically approximated induced
current, the third scheme, e.g., ¯̄χ

⊕
¯̄χ · ¯̄Einc

p , have the addi-
tional information of ¯̄χ in the inverse matrix operator of (8).
Since the pix2pix model is a real-value network, the real and
imaginary parts of ¯̄χ, ¯̄χ · ¯̄Einc

p and ¯̄χ
⊕

¯̄χ · ¯̄Einc
p are actually

used as inputs. Therefore, the numbers of channels for the
three input schemes are 2, 2 and 4, respectively.

2) The pix2pix model in FICLM
Since firstly introduced in 2014 by Ian Goodfellow, various

variants of GAN have been proposed such as the deep convolu-
tional GAN (DCGAN) [40], wasserstein GAN (WGAN) [41],
conditional GAN (CGAN) [42], Cycle-GAN [43], pix2pix-
GAN [36] and so on. Pix2pix has good performances in image-
to-image translation problems, such as synthesizing photos
from label maps, reconstructing objects from edge maps, and
colorizing images, and so on [36]. Compared with some
other networks for image translation task, such as the U-net,
pix2pix has been proven to own better prediction capability
in processing imaging tasks [36]. According to the processing
EM scattering problems, the reason that we choose pix2pix
model is twofold. First, the pix2pix model was designed for the
image-to image translation task. The inputs of FICLM are the
combinations of incident field ¯̄Einc

p and permittivity contrast
¯̄χ. Since the ¯̄χ has the same effective support as the solution
domain of induced current, this is a perfect image translation
problem. Second, the pix2pix is based on conditional GAN
and it takes the input images as the condition. Therefore, the
pix2pix model can better guide the generation of output image
by adding additional information to the model.

The pix2pix of GAN is composed of two networks, the
generator network G and the discriminator network D. The
generator G maps an input image to the target image. As
presented in Fig. 3, G has a similar network structure as the U-
net, where the mirrored downsampling and upsampling layers
are skippingly connected. G can be understood as an encoder-
decoder structure with skip connections between the mirrored
layers. Different from the original pix2pix which processes the
images with pixel values ranging from 0 to 255 in imaging
processing, the actual true values of the induced currents are
generated through G by removing the last nonlinear tanh()
activation layer in the network.
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Fig. 3. The configuration of generative network (G) and discriminative network (D).

The purpose of network of D is to discriminate the predicted
picture from the real ground truth. Since the pix2pix model is
a conditional GAN method, the inputs of D include not only
the predicted image but also the input image as the conditional
information. In pix2pix, the output of the discriminator D is
designed to be a feature vector instead of the commonly used
scalar value. This enables D to make a finer discrimination
on the image in a patch level, i.e., the receptive field for
one component of the feature vector corresponding to a
image patch. Therefore, the pix2pix model with the specially
designed D is also referred as the PatchGAN. Other detailed
explanations for the pix2pix model can be referred to [36].

3) Loss functions of the pix2pix model in FICLM
The loss functions of G and D in pix2pix can be defined

in least squares as

min
D

L(D) =
1

2
Ex,JMoM

[D(x, JMoM)− 1]2+

1

2
Ex[(D(x,G(x)))]2,

(9)

min
G

L(G) =
1

2
Ex[(D(x,G(x))− 1)]2 + λLL1(G), (10)

where x denotes the input variables for pix2pix model, and
JMoM denotes the ground truth induced current calculated by
MoM. E is the expectation function, λ is a hyperparameter,
and LL1(G) is a L1-norm pixel-wise loss defined as

LL1(G) = Ex,JMoM [‖JMoM −G(x)‖1]. (11)

The losses of least square GAN in (10) and (11) are consid-
ered to be more stable and easily to converge than that of the
vanilla GAN with binary cross-entropy loss [44]. Besides, the
use of LL1(G) in G loss can enforce the generator not only
to fool the discriminator but also to generate output which is
close to the ground truth.

The G and D are trained alternatively in an adversarial way
until a Nash equilibrium (namely a balance between the G and
D) is reached. Namely, the data generated by the generator G
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is very close to the real sample, and the discriminator D cannot
distinguish it from the real data.

C. Computational complexity

The computational efficiency plays a key role in the for-
ward scattering problems. So, it is important to analyze the
computational complexity of the calculation of the scattered
field by the proposed non-iterative method compared with
the traditional methods. The computational complexity of
the proposed FICLM can be divided into three parts: the
preparation of network input is labeled as C1, the forward
calculation of neural network G to predict the induced current
is labeled as C2, and the third part to calculate the scattered
field with the predicted current is labeled as C3.

As mentioned above, the Ω is discretized into M small
rectangular subunits. For the input of FICLM ( ¯̄χ, ¯̄χ · ¯̄Einc

p ,
¯̄χ
⊕

¯̄χ· ¯̄Einc
p as inputs), the computational costs are dominated

by computing the ¯̄χ and ¯̄Einc
p both require O(M). The compu-

tational cost to compute the multiplication of two matrices or
vector, such as the dot multiplication of ¯̄Einc

p and ¯̄χ, is O(M).
Therefore, the computational cost of this part is C1 = O(M)
for each input sample.

The next part is the pix2pix GAN to predict the mapping for
the induced current. The computational cost is composed of
the several basic operations in the neural networks, such as the
leakyReLU, ReLU, BN, where the complexity is dominated
by the operation of convolutions. Specifically, in the pix2pix,
Qi and Qo are supposed to the numbers of input feature
maps and output feature maps, respectively and the size
of feature maps are M (M = M1 × M2 = 1024). The
convolution kernel size is Kf × Kf (Kf = 4 in this paper).
Considering the above training parameters of the networks,
the computational workload in the convolution layer is in the
order of C2 = O(QiQoMK2

f ).
We have investigated the performance with different number

of layers for the network of G. Considering to balance the
computational time, complexity, and the calculation accuracy,
the generator G consisting of 16 layers is used for the
prediction of the unknown induced current. Consequently,
there are altogether 16 convolution layers (consisting of 8
number of 3 × 3 convolution layers and 8 number of 4 × 4
convolution layers) in the G architecture of this paper, and the
number of channels in the convolution layers is much bigger
than the channels in the input layer, so the computational costs
in different schemes as input of FICLM are not far apart.

To calculate the scattered fields, the computational cost of
matrix-vector multiplication is C3 = O(NrM), which can be
referred to the formula (7).

The simulation times for the three methods to calculate
the forward induced currents, i.e., the direct inverse matrix
method, the CG-FFT-based method, and the FICLM, are given
in TABLE I. It is worth mentioning that the neural networks
are accelerated by GPU-based parallelized calculation. A
server with Intel(R) Core(TM) i7-8700K CPU, 32G RAM,
and GeForce GTX 2080Ti GPU is used for both training and
testing. In the testing stage, it only requires one non-iterative
process by utilizing G network to obtain the induced current.

From the statistically analysis, it takes about 0.25 seconds to
get the induced currents with 100 samples and by contrast,
more than 10 times cost is spent by the fast MoM with CG-
FFT, and more than 25 times cost is spent by the direct inverse
matrix method.

TABLE I
CONSUMPTION TIME TO CALCULATE THE INDUCED CURRENTS FOR 100

SAMPLES.

Method Direct inverse matrix method CG-FFT-based MoM FICLM

Time (seconds) 6.43 2.61 0.25
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Fig. 4. The L1 loss for the single-incidence case. (a), (b) and (c) denote the
losses of pix2pix with ¯̄χ, ¯̄χ · ¯̄Einc

p and ¯̄χ
⊕

¯̄χ · ¯̄Einc
p as inputs, respectively.

The blue line and the red line denote the training curve and validation curve,
respectively.

III. NUMERICAL RESULTS

In this section, several numerical tests are presented to
evaluate the feasibility of the proposed data-driven FICLM
network. In order to compare the performance of three differ-
ent kinds of input schemes, i.e., ¯̄χ, ¯̄χ · ¯̄Einc

p , ¯̄χ
⊕

¯̄χ · ¯̄Einc
p ,

the numerical tests are divided into two categories, the single-
incidence case and multi-incidence case.

For the single-incidence case, there is only one transmitting
antenna located at a fixed angle, e.g., 180 degree. For the
multi-incidence case, there are multiple transmitting antennas
located at different angles. The plane wave is used as the
incident wave in both cases.

In the training stage, the MoM is used to generate the
reference induced current for each given profile and incident
wave. To evaluate the quality of the reconstructed induced
current for a single profile under a single incidence, the mean
absolute error Lsingle is defined as below

Lsingle =
1

M

M1∑
i=1

M2∑
j=1

abs( ¯̄J i,j
MoM −

¯̄J i,j
pix2pix) (12)
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where i, j denote the index of grids along the x axis and y axis
(row and column), respectively. ¯̄JMoM and ¯̄Jpix2pix denote the
reference induced current and the calculated one by pix2pix,
respectively. Similarly, to evaluate the overall merits of the
methods, the average of Lsingle errors on all samples within
the testing set is defined as,

Lmean =
1

N

N∑
k=1

Lsingle,k, (13)

where N denotes the total number of samples within the
testing set, and Lsingle,k indicates the mean absolute error of
the kth sample.

A. Numerical Setup

In all of the numerical tests, the Ω is a square with the
size of 2 × 2 m2 centered at the origin and is discretized
into 32 × 32 grids for the calculation of induced currents. In
order to get more reliable reference induced currents, we first
calculate the induced current of each sample by MoM with
64 × 64 dense grids, which is denoted as ¯̄J64. The reference
induced current map used in the training stage by FICLM,
which is termed as ¯̄J64to32 , is down sampled from the ¯̄J64 to
a 32×32 size. The input data is paired with the corresponding
reference output ¯̄J64to32, which composes the training dataset
for the pix2pix model in FICLM. The corresponding calculated
induced current through FICLM is defined as ¯̄Jpix2pix. The
induced current calculated directly by MoM with 32×32 grids,
i.e., ¯̄J32, is used to compare the accuracy by the proposed
learning-based method with the conventional MoM. In all
tests, the operating frequency is set at 400 MHz, corresponding
to a wavelength λ = 0.75 m in the air background medium.
There are 32 receivers uniformly arranged on a circle to collect
the scattered fields, where the circle is centered at the origin
with a radius equals to 3 m.

The scatterer profiles of training dataset are chosen as
handwritten digits between 0 to 9 from the MNIST database
that can be downloaded at http://yann.lecun.com/exdb/mnist/.
In order to supply more diverse samples, a random circle is
generated in the domain Ω to overlap with the digit, where
the overlapping parts belong to the cylinder. The relative
permittivities of the profiles in MNIST database and the circles
are randomly taken from 1.01 to 1.50. And the radii of the
circles are between 0.15m and 0.5m.

For the single-incidence case, the angle of incident field
is fixed at 180◦. For the multi-incidence case, the angles of
incidence are set uniformly between 0◦ and 360◦ with a 10◦

difference.
In general, the number of training samples depends on the

complexity of the network we use. The more complex the
neural network is, the larger number of training samples should
be used to train the model. Consequently, there is a tradeoff
between the model accuracy and the training time cost. We
have done several tests with different sizes of training samples.
In terms of the model prediction accuracy for testing and the
computational cost for training, the total number of samples
for the single-incidence and multi-incidence cases are set as
10500 and 21000, respectively. For the single-incidence case,

9500 samples are used for training, 500 samples for validation,
and another 500 samples for testing. Whereas, for the multi-
incidence case, 19000 samples are used for training, 1000
samples for validation, and another 1000 samples for testing.
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Fig. 5. The three different input schemes of pix2pix with the incidence
of plane wave for single-incidence cases (three different cases corresponding
to the different rows): (a) the first scheme with two channels of Re( ¯̄χ) (left
column) and Im( ¯̄χ) (right column); (b) the second scheme with two channels
of Re

(
¯̄χ · ¯̄Einc

p

)
(left column) and Im

(
¯̄χ · ¯̄Einc

p

)
(right column). The third

scheme are with four channels of direct sum of ¯̄χ
⊕

¯̄χ · ¯̄Einc
p . Herein “Re”

and “Im” denote the real and imaginary parts, respectively.

In order to statistically analyze the performance of the
proposed methods, two different sets are used for testing. One
is the MNIST database with a randomly distributed cylinder
in the Ω, which is similar with the training set. The other is
composed of two randomly located cylinders in the Ω, termed
as ’Cylinders’. And the value of relative permittivities for the
two cylinders are taken from 1.01 to 1.50 randomly with the
radii varying from 0.15m to 0.5m independently.

B. Implementation Details

In the pix2pix network, there are several hyperparameters
to be chosen carefully. Those parameters are usually problem
dependent and need to be set heuristically.

1) Output dimension of discriminator D: The output di-
mension of discriminator D is one of the most important
factors affecting the quality of the predicted result. When the
output dimension of discriminator D is larger than one, it is
denoted as the patchGAN [44]. The output of PatchGAN is not
a scalar value, but a matrix. And each element in the matrix
signifies whether the corresponding small patch in the image is
“real” or “fake”. If the size of patchGAN is too small, it may
cause the discriminator D difficult to identify the local area
of the image. Conversely, there are too many parameters to be
optimized if the size of patchGAN is too large. Different size
of patchGAN can be achieved by designing the convolutional
layers of D network. And we have tested the different sizes of
the patchGAN to compare the performance with each other.
Through the numerical comparison, the output dimension of
discriminator D is selected as 15× 15.

2) Learning rate: Learning rate, as an important parameter
in deep learning network, determines the scaling factor (step
size) in the update direction. If the learning rate is too
small, the convergence would become very slow. Whereas
the learning rate is large, the gradient may oscillate around
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Fig. 6. Test with single-incidence case illustrated by plane wave. (a) the exact profiles for four Test# 1-4, (b) the induced current calculated by MoM with
64×64 grids ( ¯̄J64), (c) ¯̄J64to32 sampling the induced current ¯̄J64 at equal intervals, (d) the induced current calculated by MoM with 32×32 grids (denoted
as ¯̄J32), (e) the difference value between the reference one, i.e., ¯̄J64to32, and ¯̄J32, (f)-(h) the difference values between the reference one, i.e., ¯̄J64to32, and
the three different schemes, i.e., ¯̄χ, ¯̄χ · ¯̄Einc

p , ¯̄χ
⊕

¯̄χ · ¯̄Einc
p , respectively. For convenience, the induced current shown here has been multiplied by 100 times.

the local minimum value and the network fails to converge.
Through continuous testing, the learning rates of G network
and D network are both set to 0.0002 initially, and they are
reduced by half per 100 epochs.

3) Batch size: Batch size refers to the number of samples
used in one iteration, which affects the optimization level and
training speed of the model. It will lead to extremely slow rate
of convergence with small batch size. On the contrary, if the
batch size is too big, the generalization ability of network will
become worse. By numerical comparison, the batch size is set
as 64.

4) The regularization parameter λ: The hyperparameter
λ is used to regularize the relative effects of the two loss
functions (GAN-loss and L1 loss) in the objective function.
In this study, we find that it has good performance by setting
the hyperparameter λ as 100.

For the single-incidence case, it takes about 40 minutes for
the training of the neural network. Fig. 4 illustrates the results

of the L1 loss in the training for a single-incidence case.
It can be seen clearly that the proposed FICLM algorithm
has converged well with all three different schemes. In the
following, the numerical results for both single-incidence and
multi-incidence cases are discussed in detail.

C. Test with the single-incidence case

In the single-incidence case, the transmitter is located at
180◦. In the training, the relative permittivities of the scatterers
are set from 1.01 to 1.50 randomly. Fig. 5 illustrates an
example of input images for FICLM under three different
schemes.

As is shown in Fig. 5, for the first and second schemes, the
number of input channels is set as 2, consisting of both real
part and imaginary part. The third scheme ¯̄χ

⊕
¯̄χ· ¯̄Einc

p , which
combines the first and second schemes, occupies 4 channels
as the input of FICLM.
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TABLE II
THE MEAN ABSOLUTE ERRORS FOR THE DIFFERENT TESTS IN FIG. 6 WITH

RESPECT TO ¯̄J64to32 .

example Test#1 Test#2 Test#3 Test#4 MNIST Cylinders

εr
1.36

1.43
1.40 1.40 1.40 / /

J32 2.80% 2.29% 2.29% 2.90% 1.87% 1.23%

Jpix2pix

( ¯̄χ)
0.91% 1.19% 0.97% 1.47% 0.95% 0.48%

Jpix2pix

( ¯̄χ · ¯̄Eincp )
0.99% 1.29% 1.05% 1.42% 0.84% 0.59%

Jpix2pix

( ¯̄χ
⊕

¯̄χ · ¯̄Eincp )
0.94% 1.49% 0.85% 1.30% 0.72% 0.42%
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Fig. 7. The loss histograms over testing results for the single-incidence
case. (a)-(c) denote the histograms of MNIST test set with ¯̄χ, ¯̄χ · ¯̄Einc

p and
¯̄χ
⊕

¯̄χ · ¯̄Einc
p as the inputs of the network, respectively. (d)-(f) denote the

histograms of “Cylinders” test set with ¯̄χ, ¯̄χ · ¯̄Einc
p and ¯̄χ

⊕
¯̄χ · ¯̄Einc

p as the
inputs of the network, respectively.

There are four different tests altogether. The Test#1 selects
a profile randomly from the training database. The Test#2 has
a profile of Latin letter “H”. And the other two tests, denoted
as “ring” and “Austria”, are totally different from the profiles
in the MNIST training database. The relative permittivities
of these scatterers for the four tests are shown in TABLE
II. The predicted results by FICLM for the four tests are
presented in Fig. 6. The Fig. 6(b) shows the induced currents
with 64 × 64 dense grids. After an uniform down-sampling,
the reference induced current for FICLM is depicted in Fig.
6(c). The induced current ¯̄J32 calculated directly by MoM with
coarse 32× 32 grids is illustrated in Fig. 6(d). The difference
image between ¯̄J32 and the reference ¯̄J64to32 is shown in Fig.
6(e). Similarly, the differences between the predicted induced
current ¯̄Jpix2pix and the reference ¯̄J64to32, are illustrated in
Fig. 6(f)-(h) for three different input schemes, respectively. As
seen from Fig. 6(e)-(h), the errors calculated by FICLM with
three different schemes are all lower than the ¯̄J32 calculated
directly by MoM in Fig. 6(e).

The absolute mean error Lsingle for the four test examples
and two test sets (consisting of the MNIST and Cylinders) are
listed in TABLE II. Fig. 7 illustrates the histograms of tested
results over two test sets with three different input schemes.
The results above all prove that the accuracy of FICLM is
much better than the MoM with the same grids. Although the
profile in Test#2 is totally different from the training samples,
the performance of the proposed FICLM is also satisfied and
even better than the one by MoM. It is validated from both
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Fig. 8. The calculated scattered fields with the predicted induced currents in
Fig. 6 for Test# 1 to 4. (a) Test #1, (b) Test #2, (c) Test #3, (d) Test #4. The
blue line “−” with “∗” is taken as a reference calculated by MoM using ¯̄J64.
The red line “−” with ”◦” denotes the scattered fields calculated by MoM
with the induced current, i.e., ¯̄J32. The black line “−”, green line “−” and
the brown line “−” with ”◦” denote the results of scattered fields with the
first, second and third schemes, respectively.

the Test #1-4 and two test sets that the performance of FICLM
with three different input schemes are almost at the same level.
This is because the incidence field is fixed and kept to be the
same in both the training and testing stages. In other words,
the FICLM network also learns the information of incidence
for the first two input schemes.

After obtaining the induced current by FICLM, the scattered
fields can be gotten by (7), where the results for Test# 1-
4 are depicted in Fig. 8(a)-(d). It shows that the real parts
and imaginary parts of the calculated scattered fields are quite
consistent to the reference ones calculated by MoM with dense
64 × 64 grids. Consequently, for the single-incidence case,
the proposed learning-based forward solver FICLM can well
predict the induce currents in the Ω with all the input of three
schemes, and the method also exhibits good generalization
capability for scatterers with totally different shapes.

D. Test for the single-incidence case with varying incident
intensities

In the above tests, the incident intensity and angle is fixed
such that the incidence field can be considered as a constant.
In order to further compare the generalization capability and
robustness for the different input schemes, in this section,
we give another single-incidence test with varying incident
intensities. All of the basic configurations and settings in the
training stage are almost the same as those in Section C. How-
ever, in the training stage, here we simulate varying incident
fields instead of a fixed one by multiplying a coefficient α
to the plane incident wave. The transmitting angle is still at
180 degrees. The coefficient α is chosen randomly from an
interval [0.4, 1].

In order to benchmark with results of Section C, in the test
processing, the ¯̄χ · ¯̄Einc

p with the same value is selected as
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Fig. 9. Tests of the single-incidence case under the different incident intensity.
(a) the exact profiles for Test# 5-6, (b) the induced current calculated by
MoM with 64× 64 grids( ¯̄J64),(c) ¯̄J64to32 sampling the induced current ¯̄J64
at equal intervals, (d) the induced current calculated by MoM with 32 × 32
grids (denoted as ¯̄J32), (e) the difference value between the reference one,
i.e., ¯̄J64to32, and ¯̄J32, (f)-(h) the difference values between the reference
one, i.e., ¯̄J64to32, and the three different schemes, i.e., ¯̄χ, ¯̄χ · ¯̄Einc

p , ¯̄χ
⊕

¯̄χ ·
¯̄Einc
p , respectively. For convenience, the induced current shown here has been

multiplied by 100 times.

the test examples. Therefore, the contrast χ becomes ¯̄χ/α,
while the corresponding incident field is ¯̄Einc

p · α. In such
a configuration, the incident field ¯̄Einc

p · α and the contrast
¯̄χ/α will lead to physically different induced current when α
varies. But their product is still kept the same as ¯̄χ · ¯̄Einc

p .
For the FICLM with the second scheme ¯̄χ · ¯̄Einc

p as the input,
the predicted induced current will not change along with α.
Similarly, for the first scheme, there is no information of
incident fields in the input of network.

To validate the above analysis, two special tests (Test#5
and 6) are given, as shown in Fig. 9. The profiles in both the
two tests are a single ring and the contrast values for Test# 5
and Test# 6 are 0.2 and 0.4, respectively. The corresponding

TABLE III
THE MEAN ABSOLUTE ERRORS FOR THE DIFFERENT EXAMPLES IN FIG. 9

WITH RESPECT TO ¯̄J64to32 .

example Test#5 Test#6 MNIST Cylinders

εr 1.20 1.40 / /

J32 1.19% 1.15% 1.86% 1.23%

Jpix2pix

( ¯̄χ)
0.78% 5.93% 3.24% 2.17%

Jpix2pix

( ¯̄χ · ¯̄Eincp )
0.74% 2.50% 3.69% 2.07%

Jpix2pix

( ¯̄χ
⊕

¯̄χ · ¯̄Eincp )
0.41% 0.54% 1.15% 0.55%

intensity of the incident wave is 1 and 0.5, respectively. The
calculated results for the two tests are depicted in Fig. 9. The
errors distribution profiles for three scheme are shown in Fig.
9(f)-(h) and the quantitative errors for the Test#5 and 6 and
the two test sets are summarized in TABLE III. It can be seen
clearly that the performance of the third scheme is much better
than the other two schemes. From the average errors of two test
databases, it is verified that the third scheme of the proposed
method has better versatility and stability compared to other
two schemes. Also, after comparing the results in Fig. 9(e)
to Fig. 9(h) and the quantitative errors in Table III, it shows
that the performance of the proposed FICLM method with the
third scheme is better than the one gotten by MoM in terms
of both accuracy and efficiency.

E. Test with multi-incidence cases
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Fig. 10. The inputs of pix2pix with multi-incidence. (a) ¯̄χ; (b) the second
scheme, ¯̄χ · ¯̄Einc

p ; and (a)
⊕

(b) is the third scheme, ¯̄χ
⊕

¯̄χ · ¯̄Einc
p . The

incidence angels for the 1st, 2rd and 3rd examples (rows) are 310◦, 10◦, and
80◦, respectively.

TABLE IV
THE MEAN ABSOLUTE ERROR FOR THE EXAMPLES IN FIG. 11 WITH

RESPECT TO ¯̄J64to32 .

example Test#7 Test#8 Test#9 Test#10 MNIST Cylinders

εr
1.36

1.43
1.40 1.40 1.40 / /

angle 120◦ 180◦ 175◦ 185◦ / /

J32 3.54% 2.29% 2.50% 2.61% 1.84% 1.18%

Jpix2pix

( ¯̄χ · ¯̄Eincp )
0.96% 1.50% 1.28% 2.55% 1.27% 0.91%

Jpix2pix

( ¯̄χ
⊕

¯̄χ · ¯̄Eincp )
1.10% 1.45% 1.33% 2.83% 1.15% 0.86%

JU−net

( ¯̄χ · ¯̄Eincp )
3.59% 6.27% 4.36% 8.07% 4.85% 3.56%

JU−net

( ¯̄χ
⊕

¯̄χ · ¯̄Eincp )
3.92% 5.94% 4.55% 8.62% 5.58% 3.97%
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Fig. 11. Tests for the multi-incidence cases illustrated by plane wave using the proposed FICLM. (a) the exact profiles for four Test# 7-10, (b) the induced
current calculated by MoM with 64 × 64 grids( ¯̄J64), (c) ¯̄J64to32 sampling the induced current ¯̄J64 at equal intervals, (d) the induced current calculated by
MoM with 32 × 32 grids (denoted as ¯̄J32), (e) the difference value between the reference one, i.e., ¯̄J64to32, and ¯̄J32, (f)-(g) the difference values between
the reference one, i.e., ¯̄J64to32, and the two different schemes, i.e., ¯̄χ · ¯̄Einc

p , ¯̄χ
⊕

¯̄χ · ¯̄Einc
p , respectively. (h)-(i) the difference values between the reference

one, i.e., ¯̄J64to32 and the one calculated with second and third schemes by U-net. For convenience, the induced current shown here has been multiplied by
100 times.

To further validate the versatility of the proposed FICLM,
the multi-incidence cases are tested in this section. In the
multi-incidence case, the angles of incidence are uniformly
sampled from 0◦ to 360◦ with a 10◦ step. Since the angles
of incident field are varying, the first scheme is not valid any
more in such case. Therefore, the second and third schemes
are used for the inputs of the neural networks in the multi-
incidence case. The profiles of the contract function for three
examples in the training are shown in Fig. 10(a). The input
profiles for the different incidence angles, i.e, 310◦, 10◦, and
80◦, are depicted in the first, second, and third rows of Fig.
10(b). The other parameter settings are the same as the single-
incidence case.

Also there are four tests for the multi-incidence case. Test#7

has a profile randomly selected from the training database with
the relative permittivity of 1.36 and 1.43 for the MNIST profile
and embodied “Cylinders” profile under an incident angle of
120◦. Test #8, #9 and #10 are the same profiles as the ones
in Fig. 6 for the single-incidence case. But the incident angles
are 180◦, 175◦ and 185◦, respectively.

The predicted results of the four tests are presented in Fig.
11. And the difference profiles between the reference induced
current, ¯̄J64to32 and the MoM ¯̄J32 are shown in Fig. 11(e).
And the errors calculated with the second and third schemes
are depicted in Fig. 11(f), and (g), respectively. It is observed
from the results of Test#7 that excellent results can be got by
both two input schemes compared to ¯̄J32 when the test profiles
and the incident angle are all coincide with the training set.
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Fig. 12. The loss histograms over testing results for the multi-incidence
case. (a) and (b) denote the histograms over MNIST test set with ¯̄χ · ¯̄Einc

p

and ¯̄χ
⊕

¯̄χ · ¯̄Einc
p as inputs of the network, respectively. (c) and (d) denote

the histograms over “Cylinders” test set with ¯̄χ · ¯̄Einc
p and ¯̄χ

⊕
¯̄χ · ¯̄Einc

p as
inputs of the network, respectively.

However, in other test examples different from the training
samples, although the performances of the predicted results
are a little worse than that of Test #7, the results of FICLM
are still better than the calculated one by MoM.

The detail information and predicted quantitative errors for
the four tests are summarized in TABLE IV. From both the
predicted induced current profiles in Fig. 11(f) and (g) and
the quantitative errors in TABLE IV, it can be inferred that the
proposed FICLM has better performance than the conventional
MoM in terms of both the computational efficiency and
accuracy when tackling the multi-incidence cases. Besides, an
excellent generalization ability for the cases out of the training
set (for both the profiles and the incidence angle) can be
achieved by the proposed FICLM. From the statistical errors
for the two test databases in TABLE IV and the histograms
of tested results over the two test databases in Fig. 12, the
performance by the third scheme is also better than the one
by the second scheme in the multi-incidence case, which is
consistent with the conclusion in the single-incidence.

Fig. 13(a)-(d) shows the calculated scattered fields (consist-
ing of the real parts and imaginary parts) according to the
predicted induced current for the Test #7-10, respectively. The
calculated scattered fields at arbitrary angles by the proposed
learning-based methods are quite coincide to the exact results
calculated by the MoM with 64 × 64 grids. Although there
are very few deviations between the predicted scattered fields
and the one calculated with MoM at some angles of the re-
ceivers, the results are quite satisfied. Therefore, for the multi-
incidence case, the proposed learning-based forward solver
with both second and third schemes all can well accurately
predict the induced current and the third scheme exhibits better
generalization capability to tackle with complicated problems.
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Fig. 13. The calculated scattered fields with the predicted induced currents
in Fig. 11 for test# 7 to 10. (a) Test #7, (b) Test #8, (c) Test #9, (d) Test
#10. The blue line “−” with “∗” is taken as a reference calculated by MoM
using ¯̄J64. The red line “−” with ”◦” denotes the scattered fields calculated
by MoM with the induced current, i.e., ¯̄J32×32. The green line “−” and the
brown line “−” with ”◦” denote the results of scattered fields with the second
and third schemes, respectively. The glaucous line “−” and the purple line
“−” with ”◦” denote the scattered fields predicted with the second and third
schemes by the U-net, respectively.

F. Test for multi-incidence case with U-net

Above we test the proposed FICLM with a pix2pix network
model. In order to compare the performance of the proposed
FICLM with some other neutral networks, the famous U-net,
which is applied widely for image segmentation task, is also
utilized to test the multi-incidence cases. In the training stage,
the settings for both the samples and the neural network (e.g.,
the number of layers, the channels, batch sizes and so on) are
the same as those in Section B.

The difference profiles between the predicted induced cur-
rent by U-net and the reference one, i.e., ¯̄J64to32 by MoM, are
depicted in Fig. 11(h) and (i) for the second and third input
schemes, respectively. As seen, compared to the difference
profiles calculated by FICLM in Fig. 11(f) and (g), the
errors of U-net are much larger. Consequently, the calculated
scattered field has large deviation from the reference one by
MoM64 in Fig. 13, especially for the Test#8, Test#9 and
Test#10. The quantitative results for the U-net are listed at
the last two rows in TABLE IV. For both the Test#7-#10,
the calculated errors are 4 to 8 times of the ones by the
proposed FICLM. Further, from the statistical analysis in
the last columns of TABLE IV, it is clearly drawn that, the
calculated accuracy of the proposed FICLM is much better
than the one of U-net.

IV. DISCUSSIONS AND CONCLUSION

In this paper, we proposed a learning-based fast method
to solve the EM scattering problems based on an end-to-
end mapping of induced currents by a variant of generative
adversarial network (GAN), namely the pix2pix model. The
induced current instead of the scattered field is calculated
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through a neural network with the proposed forward induced
current learning method (FICLM). Then the scattered field
can be obtained by a convolution of the Green’s function
with the induced current. Three schemes, i.e., ¯̄χ, ¯̄χ · ¯̄Einc,
¯̄χ
⊕

¯̄χ · ¯̄Einc, have been proposed as the inputs of the network
of FICLM. Physically, the ¯̄χ · ¯̄Einc can be considered as an
approximated induced current based on Born approximation,
which means that an end-to-end mapping of neural networks
from the input Born-type induced current to the true induced
current is constructed.

Both the single-incidence and multi-incidence cases share
the same structure of network. However, they were trained
independently. The single-incidence case can be considered
as a special one of the multi-incidence cases. In the single-
incidence case, actually, when ¯̄χ as input, in fact the proposed
FICLM implicitly learning ¯̄Einc. Therefore, when the incident
intensity is fixed, the FICLM with all the three schemes can
well approximate the mapping and predict the induced current
accurately. However, if the incident intensity changes, consid-
ering the mappings of the first two schemes are physically
not one-to-one, the third scheme shows better representation
and generalization capabilities. In the multi-incidence cases,
the second and third schemes incorporating the information
of incident field have been utilized. The numerical simulations
show that both schemes can well predict the induced currents
even when the transmitting antenna is located at different
angles and the scatterer profiles are out of the training range.
From the statistical results of the two tested database, the third
scheme of the proposed methods has better accuracy, versa-
tility and stability compared with other two schemes for both
single-incidence case and multi-incidence case. This is because
the third scheme not only utilizes an end-to-end mapping of
the induced current based on the Born approximation, but also
provides additional information of contrast. This ensures to
establish a one-to-one mapping to predict the induced current.

All the numerical simulations validate that the proposed
FICLM exhibits better performance than the traditional MoM
with the same grids in terms of computational efficiency
and accuracy through use of reference data with a higher
precision. With more accurate training sets obtained through
off-line calculations by denser grids, the proposed FICLM can
achieve better accuracy with the same computational source
of the neural network. Compared with other neural networks,
such as U-net, the proposed FICLM based on pix2pix model
has better performance. Consequently, it is validated that the
proposed learning-based FICLM method has several desired
properties, such as good accuracy, two-step fast calculation,
stability and generalization capacity, to solve the EM scattering
problems. Though only 2-D cases are tested in our numerical
experiments, the proposed approach can be easily customized
to 3-D cases. In the future, we will also try to apply the pro-
posed FICLM for solving 3-D electrically large EM scattering
problems.
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