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Abstract— Remote photoplethysmography (rPPG) is a kind
of noncontact technique to measure heart rate (HR) from
facial videos. As the demand for long-term health monitoring
grows, rPPG attracts much attention from researchers. However,
the performance of conventional rPPG methods is easily degen-
erated due to noise interference. Recently, some deep learning-
based rPPG methods have been introduced and they revealed
good performance against noise. In this article, we propose a
new rPPG method with convolutional neural networks (CNNs)
to build a mapping between a spatiotemporal HR feature image to
its corresponding HR value. The feature map is constructed in a
time-delayed way with noise-contaminated pulse signals extracted
from existing rPPG methods. The CNN model is trained using
transfer learning where images built from synthetic rPPG signals
are taken to train the model first in order to generate initials
for the practical one. The synthetic rPPG signals are interpo-
lated from blood volume pulses or electrocardiograms through
a modified Akima cubic Hermite interpolation. The proposed
method is tested in both within-database and cross-database
configurations on public databases. The results demonstrate that
our method achieves overall the best performance compared to
some other typical rPPG methods. The mean absolute error
reaches 5.98 beats per minute and the mean error rate percentage
is 7.97% in the cross-database testing on MAHNOB-HCI data
set. Besides, some key factors that affect the performance of our
method are also discussed which indicates potential ways for
further improvements.

Index Terms— Convolutional neural network, heart rate esti-
mation, remote photoplethysmography, spatiotemporal represen-
tation, transfer learning.
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I. INTRODUCTION

HEART rate (HR) is an important physiological indicator
that reflects physical and mental status of human body.

In general, HR can be measured by electrocardiography or
photoplethysmography, which needs to employ specific sen-
sors to contact with participant’s skin. However, this may cause
inconvenience and discomfort to patients especially for a long-
term monitoring. In recent years, there is a growing interest
from researchers to investigate noncontact HR measurement
techniques [1]–[3]. The remote photoplethysmography (rPPG)
is such a kind of video-based HR monitoring method, which
detects pulsation from invisible facial color change caused by
cardiac activity [2], [4].

Although the potentials of rPPG are promising, there are
still many challenges. It is well known that the rPPG pulsation
signal is very weak. The intensity or color spectrum changes
of reflected light due to noise interference can easily dominate
the pulsation signal. On the other hand, the conventional
rPPG methods are usually designed under some assumption
to simplify the noise reduction. For example, the blind source
separation methods [5], [6] commonly assume that the sources
should satisfy some statistical principles such as the indepen-
dence. Similarly, the model-based methods [4], [7] are usually
introduced based on a simplified skin optical reflection model
under prior assumptions. However, the noise contaminated in
practical applications are more complicated and diverse. This
can break the assumptions of conventional rPPG methods and
lead to unstable results.

In recent years, deep learning (DL) technique has achieved
a great success in the fields of computer vision [8] and
natural language processing [9]. Since DL is a data-driven
method, the network is fit with a large amount of training data
covering various real scenarios. In general, this characteristic
ensures that the DL method is robust and flexible for practical
applications, which indicates that it is very attractive to solve
the rPPG problem under a DL framework. But many factors
may affect the performance of DL methods, such as the
design of input–output mapping, the network structure, and
the selection of training data.

Inspired by the success of DL technique, a new rPPG met-
hod is introduced with convolutional neural networks (CNNs)
to build the mapping between a spatiotemporal HR feature
image to its corresponding HR value. The spatiotemporal
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feature image is constructed with pulse signals which are
extracted from conventional rPPG methods. The pulse is
standardized and clipped into sections in a time-delayed way to
assemble a feature map. This representation can capture both
the morphological and chronological features of pulse signals.
Therefore, the generated feature images have a specific and
unified structure to be learned by a deep CNN. A revised
ResNet-18 [10] is taken to map the spatiotemporal image to
its corresponding HR value. Our approach is considered to
integrate the advantages of conventional and DL methods.

We also evaluate some key factors that affect the perfor-
mance of the proposed method. First, we introduce a transfer
learning to train the model. The purpose is to reduce the
demand of a large amount of training data. The model is firstly
trained with images from synthetic rPPG signals and then
refined with feature maps from real data. We construct syn-
thetic rPPG signals by interpolating electrocardiogram (ECG)
or blood volume pulse (BVP) signals through a modified
Akima cubic Hermite interpolation [11]. The synthetic rPPG
signals retain the heart rate variation (HRV) information of
the real pulses. Second, we evaluate the benefit of using color
feature images instead of the gray ones. The color feature
images are constructed with rPPG signals extracted from
three different skin regions of interest. The inherent spatial
correlation of HR information is implied in the feature map.
Third, we consider the issue of data imbalance. Namely, most
HR distribution concentrate within the range of [60 90] beats
per minute (bpm). This may degrade the prediction accuracy
of HR out of this range. We take a balancing treatment to
improve the prediction accuracy. Finally, we also compare the
impact of constructing feature images using different types of
rPPG signals. The feature images with less noise contaminated
are expected to improve the accuracy of HR value prediction.
By adopting all the above techniques, the proposed method
achieves the state-of-the-art results in both within-database and
cross-database tests.

We indicate that part of the materials of this article have
been covered in our proceeding article [12] accepted by
IEEE CIVEMSA 2019 [2019 IEEE International Conference
on Computational Intelligence and Virtual Environments for
Measurement Systems and Applications (CIVEMSA)]. The
purpose of [12] is to validate the feasibility of the spatiotem-
poral representation. So Zhang et al. [12] only addresses
the results of CNN model trained and tested with synthetic
rPPG signals. The current article extends the conference
paper in both methods and results. For methods, the rPPG
pulse is extracted with the chrominance-based signal process-
ing (CHROM) method [7] from real data instead of using
synthetic ones. This article further constructs color feature
image instead of the gray one and employs a novel transfer
learning to train the model. For results, the proposed method
is fully tested on public databases considering both within-
and cross-database scenarios. The results are compared with
other typical rPPG methods.

In summary, the main contributions of this article are
threefold: 1) A novel spatiotemporal representation is intro-
duced to construct color feature images with rPPG pulse sig-
nals extracted from conventional methods. The image reverses

morphological and chronological features of pulse signals
which are nice to be learned with CNN; 2) A new transfer
learning scheme is proposed to pretrain the HR estimator.
The training images are generated with synthetic rPPG signals
which are interpolated from real ECG or BVP data through a
modified Akima cubic Hermite interpolation; and 3) Factors
that affect the performance of our method have also been
evaluated. The intrinsic spatial correlation of HR from multiple
skin regions of interest can improve the predicting accuracy
through building multichannel images. The imbalance of HR
distribution can degrade the performance of HR estimator. This
can be mitigated through a consolidation of data from multiple
databases with complementary HR distributions. High-quality
rPPG signals can reduce the noise of feature images, thereby
further improving the prediction accuracy of HR.

II. RELATED WORK

A. Conventional Methods

In 2008, Verkruysse et al. [13] firstly evaluated the possibil-
ity of measuring HR remotely from facial videos. Since then,
many researchers have devoted their efforts in rPPG research.
Among them, a large class of methods are based on blind
source separation which assume the sources are statistically
independent. Poh et al. [5] applied independent component
analysis (ICA) to demix pulse signal from raw RGB signals.
In their follow-up work [14], they applied temporal filters to
further improve the signal quality. Cheng et al. [15] intro-
duced an independent vector analysis to eliminate illumination
artifacts by extracting the common components of facial and
background regions. Another major kind of methods are based
on the skin optical reflection model. In order to overcome
the motion artifacts, de Haan et al. [7] proposed a CHROM
method. The RGB channels were projected into the chromi-
nance subspace where the motion component was greatly
eliminated. Wang et al. [4] introduced a different projection
orthogonal to the skin tone to extract pulse.

These conventional methods have made outstanding con-
tributions to rPPG development. However, they are usually
designed for certain scenarios or under strong assumptions
which may not be realistic in practical environment. On the
other hand, although the performance of conventional methods
may be suboptimal, they still remove part or most of noise
from the original RGB channels. Therefore, it is worth of
taking these methods as a preprocessing tool to simplify the
complexity of mapping in DL-based methods.

B. DL-Based Methods

Recently, some articles have applied DL technique for
rPPG-based HR estimation. Chen et al. [16] firstly proposed an
end-to-end system to establish a mapping from a video frame
contrast to the derivative of pulse. A soft-attention mask is
learned simultaneously to improve the measurement quality.
Niu et al. [17] introduced a novel spatiotemporal representa-
tion of cardiac information with RGB channels from multiple
regions of interest. The spatiotemporal image is then mapped
by a CNN to its HR value. In [18], they further improved
their work with an attention mechanism to enhance the salient
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features of rPPG signals. In another research, Qiu et al. [19]
proposed a framework by estimating HR from spatial and
temporal filtering feature maps with a CNN. The facial color
change was magnified using Eulerian video magnification
(EVM) [20] in order to enhance the signal-to-noise ratio.
Špetlík et al. [21] designed an end-to-end HR estimator with a
two-step neural network. The model was tested on three public
databases and was proven to outperform the state-of-the-art
methods. Different from the previous DL-based methods to
estimate average HR value, Yu et al. [22] tried to extract the
rPPG signal directly from raw video sequences with an end-
to-end deep spatiotemporal convolutional network.

In short, the existing DL-based rPPG methods can be
roughly divided into two categories, the feature-decoder meth-
ods and the end-to-end methods. Articles [17]–[19] belong
to the feature-decoder methods which need to define hand-
crafted features. The performance of this kind of methods
depends heavily on the quality of feature maps. For example,
in [17], raw RGB signals from different ROIs are directly
combined into a feature image. In [19], the authors obtain the
feature image through a bandpass temporal filtering of a con-
catenated ROI subimages. Differently, the end-to-end methods
[16], [21], [22] learn features directly by the network itself.
However, this may require more training data to fit the net-
work. Meanwhile, the resulting model of end-to-end method
is often a black box which is difficult to interpret. On the
other hand, some of the existing methods train the model
with private databases [16], while others [17]–[19], [21], [22]
use public databases as the sources of training data. Only
references [16], [22], and [18] tested the model generalization
capability in a cross-database way, while the others [17], [19],
and [21] tested the proposed model within the same database.

This article intends to introduce a new feature-decoder
method which integrates the advantages of conventional and
DL methods. We propose a novel spatiotemporal represen-
tation with rPPG pulse signals extracted from the CHROM
method. The generated feature map shows clear structures
to be learned by CNN. It is considered to be more motion-
resistant compared to the ones directly built from RGB
channels. We also introduce a new transfer learning scheme to
pretrain the HR estimator. Different from [17] where the trans-
fer learning was conducted with synthetic pulses defined from
some superimposed sinusoidal waves, we use standardized
pulses which are interpolated from real ECG or BVP signals.
This is more realistic to simulate true pulse signal because
they retain the same HRV information. We test our method on
public databases in both within- and cross-database settings to
demonstrate its accuracy and generalization capability.

III. METHOD

The framework of the proposed method is illustrated
in Fig. 1. Our method follows a feature-decoder model.
Spatiotemporal feature images are firstly constructed using
noise contaminated pulse signals extracted from conventional
methods. Next, the feature maps are fed into a CNN to get a
single predicted HR value corresponding to the ground truth
of the pulse. Here ResNet-18 is chosen as the CNN model
which is initialized with ImageNet pretraining. The ResNet-18

Fig. 1. The framework of the proposed HR estimation method using synthetic
and real spatiotemporal feature images with CNN.

is trained in two steps by a transfer learning approach: 1) the
model is firstly trained with spatiotemporal images built from
synthetic rPPG pulses; 2) the spatiotemporal images corre-
sponding to true rPPG pulses are taken to further refine the
model. Finally, the obtained HR estimator is used to map
the real spatiotemporal image to corresponding HR value in
testing. The details of the method are introduced as follows.

A. Spatiotemporal Feature Map Construction

As shown in Fig. 2, a noise contaminated pulse can be
extracted by conventional rPPG methods from each region of
interest (ROI). We can construct a spatiotemporal feature map
through a time-delayed way for each pulse signal. Suppose
the signal P = (p1, p2, . . . , pK ) totally has K points and K
is an even number. For rPPG applications, K is determined
as the product of the length of processing window and the
video frame rate. We take the first K/2 points and put them
into the first row of a matrix. And in turn the second row is
from the second point to the (K/2 + 1)th point, and so on.
Therefore, a square Toeplitz matrix I with the size equal to
K/2 is obtained, which satisfies

I =

⎛
⎜⎜⎜⎝

p1 p2 . . . pK/2

p2 p3 . . . pK/2+1
...

... . . .
...

pK/2 pK/2+1 . . . pK−1

⎞
⎟⎟⎟⎠.

The matrix I can be directly converted into a gray image. Since
the input signal is quasiperiodic, the generated image has a
clear structure as shown in Fig. 2. As we can see, periodic
information is revealed in the vertical direction of the stripes.
This indicates that the Toeplitz representation can illustrate
the periodicity of a 1D signal in a 2D format. On the other
hand, the Toeplitz representation is simple and it retains all
the morphological and chronological information of the 1D
signal. Therefore, the CNN can extract correct HR values from
consistent input feature images.

Since a single-channel gray image can be created for each
ROI, a color feature image is finally synthesized with all
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Fig. 2. Diagram of spatiotemporal feature map generation from video sequence.

gray images generated within the same processing window.
Although more channels can be included in the feature image,
here we choose three channels in our method considering the
following two aspects. First, the selection of proper ROI has
great impact on the quality of rPPG signals [23]. The ROI
should be chosen with rich pulsation information and be less
disturbed by nonrigid motions. Second, we need to take a
balance between the spatial correlation of HR information and
the amount of network parameters of CNN. Therefore, if more
channels are included in the feature image, it may introduce
extra noise and increase the difficulty of training the network.
The three-channel color image already retains the intrinsic
correlation information among different ROIs. The neural
network can learn this property and predict the HR value
more accurately. We will prove this through experiments later.
If we repeat the feature map construction by processing videos
from different time windows, a feature image data set can be
created. For each image, the ground truth label is the average
HR value in the same time window.

B. rPPG Pulse Extraction

Many conventional methods can be used to extract the
rPPG pulse signals. Considering the efficiency and motion-
resistant property of CHROM [7], we use this method as
the pulse extractor. The CHROM method can be simply
divided into four steps: (1) determine ROIs; (2) get RGB
traces by averaging pixel values within each ROI; (3) derive
chrominance signals from RGB traces; and (4) extract the
pulse with alpha tuning.

According to [23], the cheek region contains rich pulsation
information and it is less affected by nonrigid motion such
as smile or wink. Hence, we choose the cheek area to
extract the raw rPPG signals. A 68-point facial landmarks
detection algorithm [24] is applied to accurately locate this
area. Considering the spatial correlation of HR information,
we define three ROIs based on the landmarks as shown
in Fig. 2, where the left and right blue ones indicate
ROI 1 and 2, respectively, and the red one represents ROI 3.

For each ROI, the raw RGB signals can be determined
through a pixel averaging. According to the optical reflection
model defined in [7] and [4], the observed raw RGB signals
are linear mixtures of the motion-induced intensity signal,
the pulse signal, and the specular reflection signal. A pair of
orthogonal chrominance signals (Xs and Ys) are then defined
through a projection on the RGB signals to eliminate the
motion-induced intensity signal. So the chrominance signals

Fig. 3. The workflow of generating synthetic spatiotemporal feature images
from real ECG or BVP signals.

are considered to be motion-resistant. After taking an alpha
tuning on Xs and Ys , the pulse signal is finally extracted as
S = X f − αY f , where X f and Y f are bandpassed version of
Xs and Ys , and α = σ(X f )/σ (Y f ). Here σ(·) indicates the
standard deviation of (·). The readers can refer to [7] and [4]
for more details. The extracted pulse is normalized to a [−1, 1]
range for further usage in constructing the spatiotemporal
image.

C. Synthetic Pulse Generation

Since the proposed rPPG method is a data-driven method,
a large amount of paired facial videos and pulse data are
needed to train the CNN model. However, there are few
available public databases including the desired data. Even for
the qualified database the sample size is usually insufficient.
Inspired by [17] and [25], synthetic data can be used to pretrain
the model. Considering there are many ECG or BVP signals
available in public databases we try to generate synthetic rPPG
pulse by interpolating real ECG or BVP signals.

The procedure is as follows. Let us take an ECG signal
for example. As shown in Fig. 3, we first perform a peak
detection (to get N yellow nodes) on the ECG signal within
a predefined processing window. The inter beat interval (IBI)
sequence can then be obtained by calculating the difference
of adjacent peaks, recorded as [A1, A2, . . . , AN−1]. Let C1 =
[A1/2, A1, . . . , AN−1, (AN−1)/2]. The top positions X of syn-
thetic rPPG signal can be defined as a cumulative sum of C1.
Namely,

Xi−1 =
i−1∑
j=1

C1
j , i = 2, . . . , N + 2 (1)

where C1
j is the j th component of C1.
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Let C2 = 1/2[A1, A1 + A2, A2 + A3, . . . , AN−2 + AN−1].
Similarly, we can define the bottom Y of rPPG signal as a
cumulative sum of C2, i.e.,

Yi−1 = A1

2
+

i−1∑
j=1

C2
j , i = 2, . . . , N (2)

where C2
j is the j th component of C2.

Next, the interpolation node sequence of a synthetic rPPG
signal can be determined as

Z =
(

0 X1 Y1 · · · X N−1 YN−1 X N X N+1

a0 1 −1 · · · 1 −1 1 a1

)
(3)

where the values at top and bottom positions are set as
1 and −1, respectively, a0 and a1 are two random numbers
between −1 and 1.

The synthetic rPPG signal (denoted as a red curve in Fig. 3)
is interpolated at Z with a modified Akima cubic Hermite
interpolation method. Finally, the curve is resampled at a
desired sampling rate to construct the synthetic spatiotempo-
ral feature image. The whole workflow is as demonstrated
in Fig. 3.

Different from [17], the synthetic rPPG pulse here is inter-
polated from real physiological signals instead of a combina-
tion of several sinusoidal waves. It is considered to retain the
HRV information more accurately. During the training process,
we did not introduce any artificial noise into the synthetic data.
We hope to use the ideal synthetic feature data to pretrain the
network parameters first. The real feature data contaminated
by noise are then taken to fine-tune the model. This transfer
learning strategy is employed to ensure the convergence of
the training process. In short, the synthetic rPPG signal used
here has following advantages: 1) it maintains the heart rate
variability (HRV) information as the real physiology signals;
2) it standardizes pulse signals from different modalities
(BVP or ECG); and 3) it can be used to pretrain neural
networks in a transfer learning task.

D. HR Estimation Using CNN

In this article, the remote HR estimation is regarded as
a regression problem. The residual neural network, more
specifically, the ResNet-18 is selected as the CNN model.
We replace the last layer of the network to predict a single HR
value. The loss function is defined as a L1 loss in the following
equation:

Loss = 1

T

T∑
i=1

|HRpredict(pi) − HRlabel(i)| (4)

where T is the total number of samples, pi is the i th spa-
tiotemporal feature image, HRpredict is the HR value predicted
by CNN, and HRlabel(i) is the ground truth HR corresponding
to pi . The stochastic gradient descent (SGD) algorithm with
momentum is employed as the optimizer.

As illustrated in Fig. 1, the parameters of ResNet-18 are
initialized from an ImageNet pretraining to accelerate the
convergence of iterations. The model is then trained in two
steps through a transfer learning method. First, the synthetic
spatiotemporal feature images are taken to train the CNN

model. The neural network is guided to learn the mechanism
between the feature map and the related HR value. Second,
the model is further fine-tuned using real spatiotemporal
feature images to bridge the gap from reality. The learned
model is finally taken as a HR estimator for testing.

IV. EXPERIMENTS

In this section, we will test the proposed method in fol-
lowing aspects: 1) evaluate the accuracy of the HR estimator
with the condition-controlled MAHNOB-HCI database [26]
in a within-database way-Task 1; 2) evaluate the accuracy of
the HR estimator with the challenging realistic ECG-Fitness
database [21] in a within-database way-Task 2; 3) evaluate
the accuracy of the HR estimator with the MAHNOB-HCI
database in a cross-database way-Task 3; and 4) evaluate
the influence of some crucial factors in our method-Ablation
study.

A. Experimental Settings

The experiment is conducted with public databases for both
training and testing purposes. Four databases are involved
including the MAHNOB-HCI database [26], the ECG-
Fitness database [21], the VIPL-HR database [27], and the
UBFC-RPPG database [28]. All the four databases are com-
posed of synchronized videos and physiological signals. Par-
ticularly, the MAHNOB-HCI database provides only ECG
signals, the VIPL-HR database and the UBFC-RPPG database
provide only BVP signals, and the ECG-Fitness database
provides both.

We take a 5-s window to process all video and physi-
ological data. The adjacent windows are defined using the
forward sliding with a one second step. To eliminate the
differences among data sets, the sampling rates of rPPG-based
pulse and ground-truth physiological signal are all resampled
to 30 Hz. The frequency range of bandpass filtering is set
to [0.7, 3] Hz. All the generated synthetic and real feature
images are up-sampled to 224 × 224 before being fed to
the CNN. The details of each data set and the corresponding
training/testing samples are introduced next.

1) Databases: The MAHNOB-HCI database consists
of 527 videos in total under a well-controlled environment,
where the subjects are required to be stationary in most times.
The 15 female and 12 male participants are involved with
ages varying between 19 and 40 years old. We took the
first 60 s of each video and its corresponding ECG signal
to generate feature maps. A total of 26 520 spatiotemporal
images were constructed from the real and synthetic rPPG
pulses, respectively. In task 1, part of the samples were
used as the training data and the other were used as the
testing data. According to whether there are repeated subjects
between the training and testing data, the experiment is further
divided into two cases, i.e., the subject-dependent and the
subject-independent cases. We compared the performance of
the proposed method with some existing ones for both cases
in task 1. All the samples of MAHNOB-HCI database were
used as the testing data in task 3.

The ECG-Fitness database [21] is a very challenging data
set for remote HR measurement task, in which the subjects
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Fig. 4. The HR distributions of ground truth pulses in MANHOB-HCI, ECG-fitness, VIPL-HR, and UBFC-RPPG databases.

performed physical activities on fitness machines under dif-
ferent lighting setups. There are 17 subjects (14 male and
3 female) with ages ranging from 20 to 53 years. They
performed four different activities such as speaking, rowing,
and riding on a stationary bike and on an elliptical trainer.
Each scene was recorded by two Logitech C920 web cameras.
We only use 96 videos captured by the one positioned on
a tripod to achieve a better video stabilization. According
to the processing window and sliding setting, we totally got
4506 spatiotemporal images from the videos, and 5144 syn-
thetic spatiotemporal images from the BVP signals in this data
set. All the samples in the ECG-Fitness database were taken
for a subject-independent test within the database in task 2.

The VIPL-HR database is a recently released database
for remote HR measurement. It covers several typical rPPG
application scenarios and therefore is a good candidate to train
the model. There are 2378 visible light videos and 752 near-
infrared videos from 107 subjects (79 males and 28 females,
the ages are between 22 and 41 years old) under diverse
situations. Only visible light videos were used in the exper-
iments. Most videos from VIPL-HR database are very short,
even less than 30 s. According to the processing window and
sliding setting, we totally got 10 282 spatiotemporal images
from videos, and 17 546 synthetic spatiotemporal images from
BVP signals in this data set. The reason that the number of
synthetic samples is much more than that of the real ones is
because the BVP signals were recorded in a much longer time
than the videos in this data set. All the samples in VIPL-HR
database were taken as training data in task 3.

The UBFC-RPPG database is also publicly released for
rPPG analysis, which includes two scenarios, the simple and
realistic situations, with a total of 50 videos (8 for simple and
42 for realistic situations, age information is absent). We only
use the 42 videos from the realistic situation. The subjects
were required to play a time-sensitive mathematical game in
order to make their heart beat change. According to the same
processing window and sliding settings, 2217 real feature maps
were generated from videos, while a total of 2272 synthetic
ones were constructed from BVP signals. All the samples in
UBFC-RPPG database were taken as training data in task 3.

The HR distributions of ground truth pulses in the four
databases are shown in Fig. 4. As we can see, most of the
samples in the MAHNOB-HCI and VIPL-HR databases are
concentrated within 60–90 bpm, while most of the HR values
of the ECG-Fitness and UBFC-RPPG databases fall into the
range from 80 to 120 bpm.

2) Metrics: Several quality metrics are employed in evalu-
ation as below.

1) the standard deviation HRsd:

HRsd =
√√√√1

n

n∑
i=1

(
HR(i)

e − HRe
)2

(5)

where HR(i)
e = HR(i)

predict − HR(i)
label is the error of HR for the

i th sample, and HRe indicates the mean value of the HRe

vector;
2) the mean absolute error HRmae:

HRmae = 1

n

n∑
i=1

|HR(i)
predict − HR(i)

label| (6)

3) the root mean square error HRrmse:

HRrmse =
√√√√ 1

n

n∑
i=1

(
HR(i)

predict − HR(i)
label

)2
(7)

4) the mean error rate percentage HRmer:

HRmer = 1

n

n∑
i=1

|HR(i)
predict − HR(i)

label|
HR(i)

label

× 100% (8)

5) Pearson’s correlation coefficient r :

r =
∑n

i=1

(
X (i) − X

)(
Y (i) − Y

)
√∑n

i=1

(
X (i) − X

)2
√∑n

i=1

(
Y (i) − Y

)2
(9)

where X (i) indicates the HR(i)
label, Y (i) represents the HR(i)

predict,
and the symbol X is the mean value of X vector.

B. HR Estimation Results

Unless specified, all subsequent studies trained the model
following the flowchart in Fig. 1. The learning rate was set
as 10−3 in the pre-training with synthetic feature images for
the first 10 epochs and then 10−4 for the next 30 epochs.
The model was further fine-tuned with real spatiotemporal
feature images using the same learning rate as 10−4 for another
40 epochs to get the final HR estimator.

1) Task 1: We first evaluate the performance of our method
on the well-controlled MAHNOB-HCI database in a within-
database way. Namely, the training and testing data are both
taken from the same database.

For the subject-dependent case, where the subjects in the
training set can be the same with those in the testing set,
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TABLE I

THE SUMMARY OF AVERAGED HR RESULTS FOR MAHNOB-HCI DATA SET: A WITHIN-DATABASE CASE

Fig. 5. Bland-Altman plots (left) and scatter plots (right) between the predicted HRpredict and the ground truth HRlabel: a within-database case. The
(a) and (b) correspond to the subject-dependent case. The (c) and (d) correspond to the subject-independent case.

TABLE II

THE SUMMARY OF AVERAGED HR RESULTS FOR ECG-FITNESS DATA SET: A WITHIN-DATABASE CASE

we compare our method with the state-of-the-art EVM-CNN
in [19]. The training and testing data were selected using
the same way as that of EVM-CNN. Specifically, half of
the video sequences were randomly chosen as the training
set and all video sequences were employed for testing. The
comparison results are shown in Table I, where the best results
are highlighted in bold. It can be observed that the metrics
derived from the proposed model are comparable to those of
EVM-CNN.

For the subject-independent case, where the subjects in the
training set are different from those in the testing set, we take
a threefold cross validation similar to [17] on all samples
of MAHNOB-HCI database to test the performance of our
method. The results of our method are also listed in Table I
to compare with the SynRhythm in [17]. It can be observed
that our method consistently outperforms the SynRhythm
algorithm.

The Bland-Altman and scatter plots of the within-database
testing are illustrated in Fig. 5. It shows that the predicted HR
and the corresponding ground truth have a good consistency

in all HR distributions, especially for the subject-dependent
case.

2) Task 2: Considering that most of the subjects in the
MAHNOB-HCI database are stationary, we further test the
proposed method on another more challenging database ECG-
Fitness [21], where the subjects performed physical activities
under different lighting conditions. In order to compare,
we used a similar experimental setup as [21], where 72 videos
of 12 subjects were taken for training and 24 videos from
another 4 subjects were used for testing. The experimental
results are shown in Table II. We can see that the performance
of the proposed method outperforms the HR-CNN in [21].
We should point out that the results of HR-CNN were obtained
using videos from both cameras, while we only use those
videos from the camera fixed on the tripod. Although our
method achieves better results, there is still a big room for
further improvement in such realistic scenario.

We also show the statistical histogram of errors in Fig. 6
to demonstrate the effectiveness of the nonlinear mapping
approximated by neural network. It is observed that the
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Fig. 6. The statistical histograms of errors of predicted HR on the ECG-Fitness database. The figure on the left is the result obtained by the CHROM
algorithm. The figure on the right is the result obtained by the proposed method.

TABLE III

THE SUMMARY OF AVERAGED HR RESULTS FOR MAHNOB-HCI DATABASE: A CROSS-DATABASE CASE

Fig. 7. Bland-Altman plot (left) and scatter plot (right) between the predicted HRpredict and the ground truth HRlabel: a cross-database case.

proposed method has clearly smaller errors compared to the
CHROM. Hence, our approach can predict the HR value more
accurately than the input rPPG signal. It proves that the CNN
effectively builds the mapping between the input feature image
and its corresponding ground truth HR value.

3) Task 3: To fully evaluate the generalization capability of
the proposed method, we further took a cross-data set testing.
The samples in VIPL-HR and UBFC-RPPG were taken as
the training data, while the samples from MAHNOB-HCI
data set were used as the testing data. Several conventional
methods [4], [5], [7], [13], [29] as well as the DL-based
rPPG methods [16], [21], [22] were compared. The imple-
mentation of conventional methods borrowed the code from
the MATLAB toolbox iPhys [30] developed by McDuff. The
same 5-s processing window was used in these conventional
methods. The results of DL-based methods were directly taken
from corresponding articles due to the complexity of imple-
mentations. Therefore, the comparison of DL-based methods

in Table III may not be fair since their settings are not
exactly the same. However, it still can partially indicate the
performance of the proposed method. The full comparison
results are listed in Table III.

From the results, we can see that our method achieves state-
of-the-art performance compared to other methods except the
convolutional attention networks (CAN) method in [16]. The
HRmae of CAN in [16] is 4.57 bpm, which is a little better than
5.98 bpm of our method. The Bland-Altman and scatter plots
are illustrated in Fig. 7, from which we can observe a good
match between the predicted and the ground truth HR values.
To avoid excessive data overlap, it is worth noting that only
part of the samples (10%) were demonstrated in Fig. 7, which
were evenly selected among the total 26 520 spatiotemporal
images.

To demonstrate the stability of our method for a continuous
HR monitoring, four 60-s predicting curves (red) are shown
in Fig. 8 to compare with their ground truth curves (blue).
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Fig. 8. Continuous HR monitoring of four 1-min sequences. The blue curve represents the ground truth HR values and the red curve indicates the predicted
HR values by CNN.

The horizontal axis represents the indices of processing win-
dows and the vertical axis indicates the HR values. The four
examples were taken from different subjects with diverse HR
distributions. We can see that the predicted HR values closely
follow the trend of ground truth HR, even in some challenging
situations.

C. Ablation Study

In this section, we further analyze four essential factors that
may affect the performance our proposed method, including
the balancing treatment on HR distribution of training samples
(factor 1), the use of color feature map instead of the gray
one (factor 2), the employment of transfer learning with
synthetic data (factor 3), and the use of CHROM signal
instead of the green one to generate feature maps (factor 4).
Correspondingly, the following configurations will be tested,
where the bold highlights the default settings of our method:

1) Include/remove UBFC samples in the training set;
2) Use color/gray feature map;
3) Employ/remove pretraining in the model training

process;
4) Use CHROM/green signals to generate feature maps.
Suppose (1, 2, 3, 4) means to use all the four default set-

tings in the proposed method, while the absence of one of
them indicates to use an alternative setting. For example,
(1, 2, 4) means the method is tested without using synthetic
samples for pretraining. If not specified, other settings remain
the same except the above four factors. All the following
evaluations are only taken under a cross-data set testing as
task 3.

As we can see in Fig. 4, the HR distributions are not
uniform in the four data sets. To assess factor 1, we compare
the results of our method using configurations (2, 3, 4) and
(1, 2, 3, 4), respectively. The results are shown in Table IV.
It can be seen that the results degrade if we remove UBFC
samples from the training data. To understand the reason in
detail, we further calculated the measurement error HRmae

in different HR ranges, as shown in Fig. 9. Obviously, the
use of UBFC training data clearly improves the error in the
range of 100–120 bpm, which is consistent with the HR

Fig. 9. The comparison of HR estimation accuracy (HRmae) with and without
using the UBFC samples in training data.

distribution of UBFC samples. This verifies that the imbalance
of training data will affect the performance of our method.
We can improve this by a balancing treatment to prepare
training data with a more uniform HR distribution.

Next, we analyze the impact of using color feature image.
We selected the ROI 3 in Fig. 2 to generate grayscale
feature images, while all three ROIs were used to construct
color feature images. The color feature image implies the
spatial correlation characteristic of HR information. To assess
factor 2, the results of using grayscale (1, 3, 4) and color
feature maps (1, 2, 3, 4) were compared accordingly. The
experimental results are shown in Table IV.

From the results, we can clearly observe that the results
using color images are better than those with grayscale ones.
This verifies that incorporating spatial correlation information
of HR in the feature map will help to improve the results. The
neural network learns the consistency of HR from the depth
of color image, thereby increasing the prediction accuracy.

We further evaluate the influence of pretraining with syn-
thetic data in the training process. To access factor 3, we com-
pare the results of our method using configurations (1, 2, 4)
and (1, 2, 3, 4), respectively. The results are shown in Table IV.
It can be seen that the performance degrades if the pretraining
is removed. Theoretically, the pretraining can guide the neural
network to learn the decoder mapping between the feature
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TABLE IV

THE EVALUATION OF THE PROPOSED METHOD ON MAHNOB-HCI DATABASE WITH A CROSS-DATABASE TESTING

Fig. 10. Comparison of feature images generated by different signals:
(a) BVP signal, (b) raw green signal, and (c) CHROM signal.

image and its ground truth HR. The training with real ones
further refines this mapping when noise is contaminated.
Therefore, the pretraining reduces the risk of trapping in local
minima and improves the solution quality.

Finally, we evaluate the influence of different input rPPG
signals in the proposed method. To access factor 4, we also
generated feature images using the green signals instead of the
default CHROM ones. All other settings were kept consistent.
The results are shown in Table IV. Obviously, the results with
CHROM signals as feature sources outperform those from
green ones.

To show more details, we also compare the generated fea-
ture images using the green and CHROM signals, respectively,
as shown in Fig. 10. The figures were generated using a
video clip of subject 27 from the UBFC data set. In this
video clip, rigid motion (head rotation) and nonrigid motion
(pout and wink) are both contaminated. Therefore, the original
RGB signals are distorted by motion artifacts. Compare to the
feature image in Fig. 10(b) generated by the green signal,
the one in Fig. 10(c) from the CHROM signal is much more
similar to that of Fig. 10(a) by the BVP signal. It indicates
that the feature map generated by the CHROM signal is more
motion-resistant compared to the one with raw RGB signals.
Hence, it can reduce the difficulty to train the network. The
comparison results in Table IV also verify this.

V. CONCLUSION

In this article, we presented a new rPPG method based
on CNN for remote HR estimation from facial videos. The
method takes a feature-decoder framework to map the HR fea-
ture image to the corresponding HR value through a ResNet-18
network. The spatiotemporal feature images are constructed in
a time-delayed way using pulse signals extracted from conven-
tional rPPG methods. The CNN model was firstly trained with
synthetic feature images derived from ECG or BVP signals.
It is then further refined with real feature images generated

from noise contaminated rPPG pulses. We have taken both
within-database and cross-database studies to fully investigate
the accuracy and generalization capability of the proposed
method. Experimental results demonstrate that our method
gets overall state-of-the-art results on the public MAHNOB-
HCI and ECG-Fitness databases compared to conventional
and DL-based methods. We also evaluated some key factors
that may affect the performance of our method. It indicates
that the balancing treatment of training samples, the use of
color feature maps, the pretraining with synthetic feature maps,
and the adoption of high-quality rPPG signals as feature
map sources are all necessary to improve the HR prediction
accuracy of the proposed method.
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