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Abstract. Objective. Impedance cardiography (ICG) is a noninvasive and continuous
method for evaluating stroke volume and cardiac output. However, the ICG
measurement is easily interfered due to respiration and body movements. Taking
into consideration about the spectral correlations between the simultaneously collected
ICG, electrocardiogram (ECG), and acceleration signals, this paper introduces a two-
step spectrum denoising method to remove motion artifacts of ICG measurements in
both resting and exercising scenarios. Approach. First, the major motion artifacts of
ECG and ICG are separately suppressed by the spectral subtraction with respect to
acceleration signals. The obtained ECG and ICG are further decomposed into two sets
of intrinsic mode functions (IMFs) through the ensemble empirical mode decomposition
(EEMD). We then extract the shared spectral information between the two sets of
IMFs using the canonical correlation analysis (CCA) in a spectral domain. Finally,
the ICG signal is reconstructed using those canonical variates with largest spectral
correlations with ECG IMFs. Main results. The denoising method was evaluated for
30 subjects under both resting and cycling scenarios. Experimental results show that
the beat contribution factor of ICG signals increases from its original 80.1% to 97.4%
after removing the motion artifacts. Significance. The proposed denoising scheme
effectively improves the reliability of diagnosis and analysis on cardiovascular diseases
relying on ICG signals.

Keywords : impedance cardiography (ICG), motion artifacts, spectral subtraction,
ensemble empirical mode decomposition (EEMD), canonical correlation analysis (CCA).
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1. Introduction

Stroke volume (SV) refers to the volume of blood ejected from the ventricle in one
cardiac cycle (Guyton 1986). Cardiac output (CO), which is obtained by multiplying
SV with heart rate, represents the amount of blood ejected from the heart in one minute
(Kubicek et al. 1974). The noninvasive and continuous estimation of SV and CO during
exercise is particularly useful in the evaluation of patients with cardiovascular diseases
such as heart failure, aortic stenosis, coronary heart disease, and other valvular diseases
(Kim et al. 1992, Zhang et al. 2007).

Three typical methods of measuring SV are the Fick formula, dye dilution, and
thermodilution (Yakimets & Jensen 1995). However, these methods are in general
invasive and noncontinuous, and thereby limiting their usage in many patients (Kubicek
et al. 1974). Esophageal echocardiography and Doppler echocardiography are common
noninvasive methods for measuring SV (Naidu et al. 2015, Revzin et al. 2017). But
these measurements are also noncontinuous, and the results are highly dependent on
the operator’s experience (Revzin et al. 2019). In contrast, impedance cardiography
(ICG) is a noninvasive and continuous method to estimate SV and CO (Kubicek
et al. 1974, Sherwood et al. 1990, Anand et al. 2021). It monitors the thoracic impedance
and correlates impedance variation with various events in the cardiac cycle. The
ICG injects a high-frequency low-amplitude constant current into the thorax through
two electrodes. Another pair of electrodes placed on the boundary of the current
injecting electrodes are used to measure the thoracic voltage. Finally, the time-varying
impedance signal is obtained through Ohm’s law, and the negative of the impedance
signal derivative is called the ICG (Bagal et al. 2017).

The measurement of SV and CO depends on the accurate identification of the
characteristic points in the ICG waveform. As shown in Figure 1, the critical
characteristic points include B, C, and X, which represent the opening of the aortic
valve, the maximum ejection velocity, and the closing of the aortic valve, respectively
(Choudhari & Panse 2014). However, the detection of these reference points becomes
more challenging, when displacements of electrodes are caused by body movements and
respiration (Sherwood et al. 1990).

There are several signal processing methods for removing motion artifacts from
ICG recordings. For example, the band-pass filtering can remove noise components
outside the frequency band (Yamamoto et al. 1988, Raza et al. 1992). But it has
limitation to deal with artifacts with the spectrum overlapped with the target signal.
Another frequently used method, the adaptive filtering, can update the filter weights
automatically to fit the input noise level (Rosell et al. 1995, Alexander 2012, Hu
et al. 2014, Mallam & Rao 2016). While researchers have presented analyses of
ICG using adaptive filtering techniques, it is generally difficult to identify the filter
weights related to the sources of various artifacts (Choudhari & Panse 2014). Wavelet
transform is a time-scale representation of a digital signal and has been widely used
in ICG signal denoising (Pandey & Pandey 2007, Sebastian et al. 2011, Chabchoub
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Figure 1. The characteristic relationship diagram between ICG and ECG signals.

et al. 2016, Stepanov et al. 2017). The challenge of wavelet-based methods is to select the
optimal mother wavelet, since it strongly affects the denoising effects (Ngui et al. 2013).
Ensemble averaging is performed by totaling up the digitized samples of each signal
and dividing by the number of synchronized beats on average, thereby reducing the
impact of single-beat fluctuations in the impedance signal (Muzi et al. 1985, Riese
et al. 2003, Ishiguro et al. 2006, Sheikh et al. 2020). Although this method can eliminate
artifacts in emotional tension or slight shaking, it is not effective in removing motion
artifacts under conditions with intense exercise.

Considering the spectral correlations between the simultaneously collected ICG,
the electrocardiogram (ECG), and the acceleration signals, this paper proposes a two-
step spectrum denoising method to remove motion artifacts in ICG signals with respect
to the ECG and acceleration signals. First, the spectral subtraction technique (Zhang
et al. 2014, Arunkumar & Bhaskar 2020) is used to remove major motion artifacts caused
by body movements in ICG and ECG regarding the acquired acceleration signals. On
the other hand, since the ECG and ICG signals have strong correlations in the frequency
domain due to synchronized heart rhythm, the ICG can be further denoised using the
spectral correlation with ECG. Accordingly, the single-channel ICG and ECG signals are
decomposed respectively into intrinsic mode functions (IMFs) by the ensemble empirical
mode decomposition (EEMD). The canonical correlation analysis (CCA) (De Clercq
et al. 2006, Sweeney et al. 2012, Chen et al. 2017) is then taken to determine the shared
components between spectra of the two IMF sets. Finally, the denoised ICG signal
is reconstructed by removing those spectral components with low correlations, thereby
indirectly removing motion artifacts. We test the denoising method for 30 subjects
under both resting and cycling scenarios. Experimental results demonstrate clear
enhancements on the quality of ICG signals after removing the motion artifacts. The
proposed denoising scheme provides an efficient way of measuring stable ICG, especially
under exercising scenarios, which improves the reliability of follow-up diagnosis and
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analysis relying on ICG signals.

2. Method

2.1. Dataset

The in-house dataset collects ECG, ICG, and acceleration signals from 30 subjects (15
women and 15 men, whose age ranges between 21 to 45) under the resting and exercising
scenarios, respectively. All signals last a total of 150 seconds. As shown in Figure 2,
the participants were seated in an armchair (30 seconds) for the resting case and they
rode on a spinning bike (120 seconds) for the exercising case during recording. The
positions of the ICG electrodes, ECG electrodes and accelerometer are marked in Figure
2(b) with red, orange and green boxes, respectively. The experimental procedures were
approved by the Ethics Committee in Human Research of the University of Science and
Technology of China. Prior to the collection of the data, all the volunteers filled out an
informed consent form.

(a) resting period

ICG electrodes

ECG electrodes

Accelerometer and

TL-NiCON-100

(b) cycling period

Figure 2. A data collection example for recording the subjects’ ICG, ECG, and
acceleration signals under two scenarios.

The ICG, ECG, and acceleration signals were obtained simultaneously through a
physiological signal module TL-NiCON-100 (Anhui Tongling Bionic Technology Co.,
Ltd.) and transmitted wirelessly to a laptop using a 200 Hz sampling rate. According
to the description of Kubicek et al., the ICG signal is obtained by a classic tetrapolar
array, placing the current electrode around the bottom of the neck and the ground
electrode near the thorax 3 cm below the xiphisternal junction. The remaining two
electrodes are voltage electrodes, and they are 3 cm away from the current electrode
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Figure 3. The flowchart of the proposed method for removing motion artifacts in
ICG signals.

and the ground electrode. The injected current was set at 2mA and 50 kHz. The
ECG signal was obtained by two more electrodes following the Lead II array. The two
active electrodes were placed on the centerline of the right clavicle and the sixth rib
of the left midclavicular line. The ground electrode was shared with the ICG signal.
All electrodes were provided by 3M company. The accelerometer sensor was integrated
into the TL-NiCON-100, which can collect acceleration signals in x, y, and z directions
in real time. TL-Analysis-Software was used to store, display, and export the data in
CSV format. Further analysis and development of the algorithm were carried out in
MATLAB R2016a (MathWorks Inc. Natick, Mass.).

2.2. Algorithm Implementation

The flowchart of the algorithm is depicted in Figure 3, which includes five
steps: preprocessing, spectral subtraction, EEMD, CCA in spectrum domain, and
reconstruction. The preprocessing performs bandpass filtering on physiological signals
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Algorithm 1 Denoising algorithm of ICG signals
1: Slice the ECG, ICG, and acceleration signals into segments. Filter the ECG and

ICG signals with a bandpass filter [0.7 25.0] Hz and [0.7 6.0] Hz, respectively. Use
acceleration signals to fuse the motion signal.

2: Normalize the spectrum of ICG, ECG, and the motion signal, then perform spectral
subtraction for ICG and ECG separately.

3: Decompose the processed ECG and ICG from single-channel signals into multi-
channel signals (IMFs) by EEMD. Selects IMFs with a dominant frequency falling
into [0.7 6.0] Hz. The spectra of N selected IMFs are calculated by the fast
Fourier transform (FFT), which are denoted as vectors s1,ICG, ..., sN,ICG and
s1,ECG, ..., sN,ECG. Set the matrices SICG = [s1,ICG, ..., sN,ICG]T , and SECG =

[s1,ECG, ..., sN,ECG]T .
4: Take CCA on SICG and SECG. Suppose the canonical variates (CVs) of ICG and

ECG are denoted as matrices UICG and VECG, respectively, while the corresponding
canonical correlation coefficient vector is r = [r1, r2, ..., rk, ..., rN ].

5: Set the UICG(i, :) = 0 if the i > 1 & r(i) < 0.9.
6: Reconstruct the ICG with retained CVs and obtain the final denoised ICG.

and fuses motion signals. Spectral subtraction aims to suppress the major motion
artifacts in ICG and ECG. The EEMD is taken to decompose the single-channel
physiological signals into multi-channel IMFs, while the CCA is used to obtain the most
relevant part between the spectra of two IMF sets. Finally, the reconstruction module
obtains the denoised ICG signal through eliminating those canonical variates with low
correlations in the spectrum domain. The whole denoising method is summarized in
Algorithm 1 and detailed implementations are introduced as below.

2.2.1. Preprocessing The ECG, ICG, and acceleration signals are respectively sliced
into non-overlapping segments. There are total of 30 subjects, and each subject records
data of 150 seconds, which is further cut into segments of 10 seconds. Therefore, there
are 450 segments (30(subject)*150(s/subject)/10(s/segment)), including 90 in resting
periods and 360 in cycling periods. Most of the content of the ICG signal is in the band
of [0.5 4.0] Hz (Liu et al. 2018, Muñoz et al. 2018). Taking into account the increase in
HR during exercise, the fundamental of the ICG spectrum will move forward. Therefore,
the cutoff frequency is set as [0.7 25.0] Hz for ECG signal, and [0.7 6.0] Hz for the ICG
signal and acceleration signals. The fast Fourier transform (FFT) is applied to the
acceleration signals in x, y and z directions, and the obtained amplitudes are labeled as
sx, sy and sz, respectively. As shown in Eq. 1, we select the maximam magnitude of
the three frequency spectra for each frequency bin that can most effectively represent
the motion artifacts (Tariqul Islam et al. 2018)

sM(k) = max(sx(k), sy(k), sz(k)), (1)

where sM(k) is the spectrum of motion signal, and k is the index of spectral components.
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2.2.2. Spectral Subtraction The spectral subtraction is a technique used to remove
major motion spectra from the spectra of physiological signals (Zhang et al. 2014). In
this paper, the term spectrum subtraction refers to magnitude spectrum subtraction.
Suppose sP(k) denotes the normalized spectrum of ICG or ECG signal and sa(k) is the
normalized spectrum of motion of sM(k). A generalized spectral subtraction performs
the following operations,

|s(k)| =


|sP(k)| − |sa(k)|, |sP(k)|>|sa(k)| & k 6= fhr

|sP(k)|, k = fhr

0, otherwise

(2)

where s(k) is the spectrum of ICG or ECG after spectrum subtraction, k is the index
of spectral components, and fhr is the estimated frequency of heart rate (HR) by ECG.
As shown in Eq.2, s(k) is set to zero when the motion spectrum component is higher
than the spectrum of ICG or ECG, which is to avoid negative spectrum peak after
spectral subtraction. Particularly, this method prevents the HR component from being
weakened during the spectral subtraction process if peaks of motion artifacts are close
to true HR peak.

2.2.3. EEMD-CCA in spectrum domain The spectral subtraction can only remove
major motion artifacts from the ICG and ECG signals. Considering its spectrum
correlation with ECG, we take the CCA to further enhance the quality of ICG signal. As
required by CCA, the single-channel ECG and ICG need to be decomposed into multi-
channel signal sets. Here the EEMD is used to decompose the physiological signals into
intrinsic mode functions (IMFs). The algorithms of EEMD and the following CCA in
spectrum domain are introduced as below.

EEMD is a noise-assisted data analysis method aimed at overcoming the mode
mixing deficiencies of the empirical mode decomposition (EMD). To do this, each signal
in EEMD is consisted of the original signal plus a finite amplitude white noise (Wu &
Huang 2009, Motin et al. 2016). The EEMD then defines the IMFs as the mean of an
ensemble of trials. Accordingly, the preprocessed physiological signal p(t) (ICG or ECG
after spectral subtraction) is added with white noise n(t) to generate a new signal q(t)

(Eq. 3), which is decomposed into IMFs (Eq. 4),

q(t) = p(t) + αn(t), (3)

q(t) =
K∑
i=1

zi(t) + rn(t), (4)

where zi is the ith IMF, K is total number of obtained IMFs, α is the magnitude of the
white noise, and rn is the residual signal after EEMD. The obtained IMFs are sorted by
their dominant frequencies. We only keep the IMFs with a dominant frequency within
[0.7 6] Hz. To guarantee the performance of the subsequent CCA processing, we choose
the channel number of selected IMFs to be at least five. If the actual number of selected
IMFs is less than five, we will also retain neighboring IMFs as a supplement.
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The spectra of selected IMFs are calculated by the fast Fourier transform (FFT),
which are denoted as vectors s1,ICG, ..., sN,ICG and s1,ECG, ..., sN,ECG, respectively, where
N ≤ K is the number of selected IMFs.

Define SICG = [s1,ICG, ..., sN,ICG]T and SECG = [s1,ECG, ..., sN,ECG]T . The CCA
is further taken to extract relevant frequency components from SICG and SECG.
Accordingly, the canonical variates (CVs) uICG and vECG can be represented as
uICG = wT

1 ∗ SICG and vECG = wT
2 ∗ SECG, where w1 and w2 are the weight vectors,

respectively (De Clercq et al. 2006). The objective function of CCA is defined as

max
w1,w2

r(uICG,vECG) =
wT

1 Σ12w2√
wT

1 Σ11w1

√
wT

2 Σ22w2

, (5)

where r indicates the canonical correlation coefficient, Σ11 and Σ22 are the auto-
covariance matrices of SICG and SECG, respectively, and Σ12 is cross-covariance matrix
of SICG and SECG. Suppose we get N CVs with canonical correlation coefficients
denoted as a vector r = [r1, r2, ..., rk, ..., rN ]. For obtaining the Mth (M ≤ N)
rM value, it is also calculated by Eq. 5. However, the Mth pair canonical variates
(uICG,M ,vECG,M) is further required to be uncorrelated with the obtained canonical
variables (uICG,1,vECG,1), (uICG,2,vECG,2), ..., (uICG,M−1,vECG,M−1) at the same time.
The total N CVs for ICG and ECG are recorded in matrices UICG and VECG,
respectively. The corresponding weight vectors are stored in matrices AICG and BECG,
respectively.

Because the ICG and ECG have strong correlations on the spectrum components,
the canonical variate uICG for ICG with a correlation coefficient r satisfied i > 1 &
r(i) < 0.9 is considered as an artifact, which will be set to zero before reconstructing
the ICG signal.

2.2.4. Reconstruction of the ICG Signal As given in Eq. 6, the ICG spectrum set
can be reconstructed by the retained canonical coefficients ÃICG and the corresponding
canonical scores Ũ as

S̃ICG = Ã−1
ICGŨICG, (6)

where S̃ICG = [̃s1,ICG, ..., s̃N,ICG]T is the reconstructed ICG spectrum set and s̃i,ICG is
the denoised spectrum of ith ICG IMF.

Therefore, the ith denoised IMF z̃i,ICG of ICG in time domain is then easily
determined by the inverse Fourier transform with the spectrum s̃i,ICG and corresponding
phase information,

z̃i,ICG(n) =
1

M

M−1∑
k=0

s̃i,ICG(k) exp(jnk
2π

M
), i = 1, 2, . . . , N (7)

where M is the number of points for inverse Fourier transform.
Finally, we add up all the obtained ICG IMFs as below,

ICG(n) =
N∑
i=1

z̃i,ICG(n), (8)
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Algorithm 2 Detection of ICG characteristic points
1: Detect the R and Q characteristic points from ECG.
2: Scan the ICG segment from the range of ECG R-peak to R-peak + RR-interval/3.

Find the maximum point (dz/dtmax) as the C point (Forouzanfar et al. 2018).
3: Find the point B as the one which is closest to 0.15*dz/dtmax within the 20% to

65% of the RC interval (Naidu et al. 2011, Bagal et al. 2017).
4: Scan the ICG segment from ECG T-peak to T-peak + RR-interval/3 and mark the

obtained minimum value as the X point.
5: Repeat the process until ICG scans to the end of the segment.

where ICG(n) is the final denoised ICG signal.

2.3. Evaluation method

The signal quality of ICG affects the accuracy of the detection of characteristic points,
which in turn influences the accuracy of corresponding physiological parameters. Due to
the lack of reference ICG signal, this article evaluates the ICG signal quality indirectly
according to the inherent features of the ICG signal, including the valid beat (VB),
beat contribution factor (BCF), average correlation coefficient (ACC), the agreement
between the interval of ICG CC (two adjacent C points) and ECG RR (two adjacent R
points), the coefficient of variability of pre-ejection period (PEP), and the left ventricular
ejection time (LVET).

2.3.1. Detection of ICG characteristic points As shown in Figure 1, the main
characteristic points of the ICG signal are B, C, and X, while those of ECG are R
and Q. The cardiac function parameters measured via ICG include SV, CO, HR, PEP,
LVET, and other derived hemodynamic parameters (Kubicek et al. 1974). The time
interval between point B and point X is the LVET, the time interval between ECG
point Q and ICG point B is the PEP, the amplitude of point C is dz/dtmax, and HR is
calculated by ECG RR interval or ICG CC interval. SV is generally calculated using
the Kubicek equation using two hemodynamic parameters, the LVET and the dz/dtmax

of ICG. The CO is SV multiplied by HR. The method for detecting characteristic points
can be summarized as Algorithm 2.

2.3.2. ICG signal quality evaluation indicators As shown in Table 1, a beat was
identified as a valid one in this paper when the following conditions are satisfied. The
LVET is in the range of 160 ms to 380 ms, the PEP is in the range of 50 ms to 160 ms, the
RR interval is in the range of 330 ms to 2000 ms, and dz/dtmax is in the range of 0.2 Ω/s
to 3.0 Ω/s (Cybulski et al. 2017). We indicate that the above conditions are necessary
but not sufficient. However, these conditions are of great significance in indirectly
evaluating ICG signal quality, since these physiological indicators are important features
of ICG signals. More explanations about the above parameters are as follows.
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Table 1. Valid range of LVET, PEP, RR and (dz/dt)max.

Group LVET (ms) PEP (ms) RR (ms) (dz/dt)max (Ω/t)

Range 160-380 50-160 330-2000 0.2-3.0

0 0.1 0.2 0.3 0.4 0.5

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2
ICG beats in one segment

Ensemble averaging beat

Each  beat in the segment

Figure 4. An example of the ensemble averaging beat and single beat in the processing
segment.

• The BCF is calculated as the ratio of valid beat number to the total number of
beats (Sheikh et al. 2020).
• The ACC is the average value of the correlation coefficients between the ensemble

averaging beat and each single beat within the segment. The ensemble averaging
beat is the average of each beat in the processing segment as shown in Figure 4.
Since each segment lasts for 10 seconds, usually there is little difference between
each beat in the segment. Sheikh et al. postulated that normal ACC range is
between 0.8 and 1.0, and higher ACC indicates better ICG signal quality (Sheikh
et al. 2020).
• The CC interval of ICG is similar to the ECG RR interval, which represents the

time interval between two adjacent heartbeats. The CC and RR can both be used
to calculate the HR. Considering the correlation of ICG and ECG, the difference
between CC and RR can indirectly reflect the quality of the ICG signal. The smaller
the difference between CC and RR, the higher the signal quality.
• Finally, the coefficient of variability of hemodynamic parameters (PEP and LVET )

in each segment is calculated to assess the quality of the ICG signal. The coefficient
of variation indicates the dispersion of measurement, and it is defined as the ratio
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of the standard deviation to the mean. The variability of PEP and LVET in each
segment is considered to be small within 10 seconds of continuous ICG data. In
this article, we assume that the data with a coefficient of variability greater than
15% is abnormal data (Erickson 1986).

3. Results

3.1. Valid Beat and Beat Contribution Factor

Figure 5 shows an example of ICG denoising and the detection of ICG characteristic
points under resting and cycling conditions. We normalized the ICG signals to clearly
show the difference between the raw ICG and the denoised ICG. As shown, the
characteristic points are denoted with different markers, where the denoised ICG signal
gets more accurate characteristic points compared with the raw one.
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Raw and denoised ICG under resting

Normalized Raw ICG Normalized Denosed ICG
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(b)
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(c)
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(d)

Figure 5. Examples of the ICG denoising and the detection of characteristic points.
(a) The effect of ICG denoising in a resting scenario. (b) Detection of ICG characteristic
points in a resting scenario. (c) The effect of ICG denoising in a cycling scenario. (d)
Detection of ICG characteristic points in a cycling scenario.

The results for all records are summarized in Table 2. In the resting scenario,
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Table 2. The comparison of VB and BCF for raw and denoised ICG signals.
Group VBraw VBdenoised TotalBeat BCFraw BCFdenoised

Resting 976 1049 1068 91.4% 98.2%
Cycling 4773 5942 6108 78.4% 97.3%

All 5749 6991 7176 80.1% 97.4%

there are a total of 1068 beats. After denoising, the number of VB is significantly
increased. Meanwhile, the BCF of ICG increases from its original 91.4% to 98.2%. In
the cycling scenario, the total beats reach 6108. We have observed similar improvement.
Particularly, the BCF of ICG increases from 78.4% to 97.3%. Overall, the average BCF
of raw ICG is about 80.1% and that of the denoised one is about 97.4%.

3.2. Average Correlation Coefficient

In the histogram plot shown in Figure 6, the ACC of denoised ICG is significantly
higher than those of the raw ICG in all episodes. In the resting period, the ACC of
raw ICG ranges from 0.82 to 0.96, and the ACC peak is between 0.95 and 0.96. In
contrast, the ACC of denoised ICG ranges from 0.88 to 0.99, and the ACC peak is at
0.97. In the cycling period, the raw ICG has a lower ACC, which ranges from 0.4 to
0.95. Particularly, only 42.5% (153/360) samples exceed 0.8 and 4.4% (16/360) exceed
0.9. It indicates that body movements induced significant noise in the ICG recordings.
In comparison, the ACC of denoised ICG ranges from 0.8 to 0.99 with the peak at 0.93.
The ACC of all samples exceed 0.8 and about 81.7% (294/360) samples exceed 0.9.
It clearly verifies the effectiveness of the proposed denoising algorithm to improve the
quality of ICG signals.

(a) (b)

Figure 6. Average values of correlation coefficients between the ensemble averaging
beat and each single beat in the segment. (a) Correlation coefficient in the resting
period. (b) Correlation coefficient in the cycling period.
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3.3. Agreement between ECG RR Interval and ICG CC Interval

The ECG signal is considered to be less affected by the motion artifacts, so it can be
considered as a useful reference for the ICG signal. The Bland-Altman plots in Figure
7 show that there is a large gap between the CC interval of raw ICG and the RR
interval of ECG, especially in the cycling period. However, a close agreement between
the ECG RR intervals and the denoised ICG CC intervals has been demonstrated after
denoising. Compared with the raw ICG, the CC intervals of denoised ICG signals are
more consistent with the ECG RR intervals in the overall study (resting and cycling
scenarios).
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Figure 7. Agreement between the ICG CC intervals and the ECG RR intervals.
(a) Bland-Altman plot for raw ICG in the resting period. (b) Bland-Altman plot for
denoised ICG in the resting period. (c) Bland-Altman plot for raw ICG in cycling
period. (d) Bland-Altman plot for denoised ICG in cycling period.
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3.4. Coefficient of Variability of Hemodynamic Parameters

The mean and variance of PEP and LVET are calculated in each segment. The
coefficient of variability is used to reflect "intra-subject variability". As shown in Figure
8, the coefficient of hemodynamic parameters (PEP, LVET) variations is significantly
lower for denoised ICG signals than that of raw ICG. Particularly, in the resting scenario,
the coefficients of variability for the denoised ICG are in general below those of raw ICG
signals, and they are almost all below the y = 0.15 ∗ x line. But in the cycling period,
only the coefficient of variation of PEP and LVET obtained by denoised ICG are mostly
below y = 0.15 ∗ x line.
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Figure 8. Mean and variance of PEP and LVET in resting and cycling scenarios. (a)
Mean and variance of PEP in the resting scenario. (b) Mean and variance of LVET in
the resting scenario. (c) Mean and variance of PEP in the cycling scenario. (d) Mean
and variance of LVET in the cycling scenario.
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Figure 9. Example results of using only spectral subtraction (left) and the two-step
spectrum denoising method (right).
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Figure 10. Example results of using only CCA in spectrum domain (left) and the
two-step spectrum denoising method (right).

4. Discussion

The above experimental results demonstrate the effectiveness of the proposed method
to denoise the ICG signals with motion interference. Ablation study is used to describe
the process of removing certain parts of the algorithm in order to better understand
the behavior of the algorithm (Meyes et al. 2019). Since the proposed ICG denoising
method is a two-step method, we take the ablation study to verify the effectiveness of
each step in the method.

The proposed two-step spectrum denoising method including spectrum subtraction
as well as CCA in spectrum domain. Particularly, the spectrum subtraction eliminates
the major frequency components caused by noise (referred to as motion artifacts in this
paper), while the CCA is applied to obtain the most relevant parts of the spectra of the
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physiological signal, which further removes motion artifacts. Figure 9 shows the results
of using spectrum subtraction alone compared to that of using the two-step spectrum
denoising method. Figure 10 shows the results of using CCA in spectrum domain alone
compared to that of using the two-step spectrum denoising method. The experimental
results in the ablation study show that the proposed two-step method is more efficient
to improve the ICG quality than each single step, which confirms the validity of the
proposed method for removing motion artifacts.

5. Conclusion

In this study, we have introduced a two-step spectrum processing method to denoise
ICG signal. The denoising of ICG would allow for reproducible physiological analysis
that is beneficial to the diagnosis of cardiovascular diseases. The method has been
evaluated for 30 subjects during a motionless resting period and a cycling period. The
experimental results show that the BCF of ICG signal increased from the original 80.1%
to 97.4% after removal of the motion artifacts. Compared with the raw ICG, the CC
interval of the denoised ICG was more consistent with the RR interval of ECG. The
ablation experiment also showed that the spectral subtraction as well as the CCA in
spectrum domain are both essential steps for removing artifacts. Although we have
evaluated the effectiveness of the proposed method under resting and cycling scenarios,
we will further check its validity in more motion scenarios other than cycling in future
work.
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