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Improving the Performances of the Contrast Source
Extended Born Inversion Method by

Subspace Techniques
Krishna Agarwal, Rencheng Song, Michele D’Urso, and Xudong Chen

Abstract—Subspace techniques have been introduced in the
framework of contrast source (CS) extended born (CSEB) model,
for improving its reconstruction capabilities. Two techniques are
demonstrated. First, a scheme for generating a good initial guess
of the scatterer profile is shown. Second, subspace-based opti-
mization method is used for optimization. Using the suggested
techniques, CSEB model can be applied for solving inverse elec-
tromagnetic scattering problem with an extended range of appli-
cation with respect to previous contributions, particularly for very
high contrast lossy scatterers.

Index Terms—Contrast source (CS) extended born (CSEB)
model, high contrast, inverse electromagnetic scattering, strong
scatterers, subspace optimization method.

I. INTRODUCTION

THE problem of reconstructing the electromagnetic proper-
ties of the unknown objects in an inaccessible region has

been of considerable research interest for a long time. In order
to determine the properties of the inaccessible targets, a nonlin-
ear and ill-posed inverse problem needs to be solved. Habashy
et al. [1] and Caorsi and Gragnani [2] reduced the ill-posedness
of the problem by first determining a minimum norm solution
of the contrast source (CS). In multiresolution methods [3], [4],
the problem of ill-posedness was addressed by discretizing the
zoomed investigation domain at every iteration. More recently,
subspace-based optimization method (SOM) [5]–[8] addressed
the problem of ill-posedness by predetermining a stable portion
of the CS before performing the optimization.

CS inversion (CSI) [9]–[11] indirectly worked on the non-
linearity of the problem by initiating a two-step optimization
of the CS and the contrast function. In [12]–[15], linearization
of the model using the Born approximation has been adopted.
Instead of linearizing the model, CS extended born (CSEB)
model [16]–[20] modifies the CS model of scattering without
introducing any approximation such that the overall model
has lesser degree of nonlinearity (DNL) (introduced in [21])
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than the original model. While CSEB is suitable for inverse
scattering problems involving lossy background medium, it
was demonstrated in [18] that CSEB is less suitable for the
problems of lossless background and lossless scatterers. It is
noted that, although the applicability of CSEB to lossless prob-
lem was demonstrated with experimental data [19], [20], [22],
CSEB was augmented with frequency hopping or preliminary
qualitative reconstruction. Our work considers single frequency
measurements and nonqualitative initial guess scheme.

We propose to introduce subspace-based techniques inspired
by SOM in the framework of CSEB for extending their ap-
plicability to the problems with lossless background, lossless
scatterers, and very high contrast scatterers. First, a scheme
for generating an initial guess of the scatterer profile using
stable portion of induced current distribution is proposed. It
is well known that, for nonlinear problems, initial guess plays
an important role in the convergence to the global minimum.
Although Habashy et al. [1], Caorsi and Gragnani [2], and
Chen [8] compute an initial guess for the CS, we compute
an initial guess of the contrast function of the investigation
domain. We show that, using the initial guess generated by
the proposed scheme, CSEB can be used to reconstruct high-
contrast scatterers in the lossless background as well. Second,
within the framework of CSEB, it is proposed to use SOM for
optimization. This is particularly useful in the reconstruction of
very high contrast scatterers. Thus, if the proposed initial guess
only is used in CSEB, the CSEB benefits from an initial guess
of the scatterer profile (contrast function). If SOM only is used
in CSEB, the CSEB benefits from the initial guess of the CS,
and if both the initial guess and SOM are used, CSEB benefits
from the initial guess for both the contrast function and the CS.
Through these techniques, we show that the CSEB empowered
with subspace techniques can be applied to many interesting
and challenging cases.

II. INTRODUCTION TO THE CS MODEL

A 2-D homogeneous square region Ω is considered, which
contains nonmagnetic dielectric scatterers, extending infinitely
in the z-direction. The whole setting corresponds to the trans-
verse magnetic case, where the electric fields and currents are
in the longitudinal direction (z-direction) only. The permittivity
at any point is given by ε(�r), which is equal to the background
permittivity εb for the nonscattering locations. The region Ω is
illuminated by Ns electric line sources (located at �rs; s = 1 to
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Ns), and the electric fields are received at Nd detectors (located
at �rd; d = 1 to Nd).

The region Ω can be discretized into M pixels of uniform
shape and size such that the mth pixel is represented using �rm
and the area of each pixel is a. After the discretization, the
scattering formulation for all the measurements corresponding
to one incidence (with source location at �rs) is given as

E
sca
s =Gsca · I inds , (1)

I
ind
s =Ψ ·

(
E

inc
s +Gdom · I inds

)
(2)

where E
sca
s has components Esca(�rd, �rs) for d = 1 to Nd,

I
ind
s is composed by aI ind(�rm, �rs) for m = 1 to M , and E

inc
s

contains Einc(�rm, �rs) for m = 1 to M . Here, Esca(�rd, �rs) is
the scattered field at �rd excited by a source at �rs; I ind(�r, �rs) and
Einc(�r, �rs) are the induced current and incident electric field at
a location �r ∈ Ω due to the source at �rs. The matrix Gsca is of
dimension (Nd ×M) where the (d,m)th element is g(�rd, �rm).
The matrix Gdom is of dimension (M ×M) where the (m, j)th
element is g(�rm, �rj), where g(�r′, �r) = −(ωμ0/4)H

(1)
0 (kb|�r′ −

�r|) is the Green’s function corresponding to the homogeneous
background medium having wavenumber kb. The diagonal
elements of Gdom are zero. The matrix Ψ is an M dimensional
diagonal matrix, where the mth diagonal element is aξ(�rm) and
ξ(�r) is the scattering strength given by

ξ(�r) = −iω (ε(�r)− εb) . (3)

III. CSEB MODEL

In Section II, (2) can be written as I
ind
s = (IM −Ψ ·

Gdom)−1 ·Ψ · Einc
s . As evident, the nonlinearity appears nu-

merically from the term Ψ ·Gdom. Thus, ‖Ψ ·Gdom‖ is an
indicator of the DNL of the model [18]. This has been discussed
in detail in [21]. For the scatterers with large contrast, the
value of ‖Ψ ·Gdom‖ is very large, thus indicating significant
nonlinearity [17], [18]. The CSEB model [17], [18] modifies the
contrast (scattering strength ξ(�r)) using a nonlinear position-
dependent function as follows:

p(�r) =
ξ(�r)

1− ξ(�r)fΩ(�r)
(4)

where fΩ(�r)=
∫
Ω g(�r, �r′)d�r′ ≈a

∑M
j=1,j �=m g(�r, �r′);�rj , �rm∈

Ω is the tool function to change the contrast, the operator
Gdom, and, consequently, the nonlinearity of the whole model.
Based on this modified contrast, (2) can be reformulated as

I
ind
s =P ·

(
E

inc
s +Gdom,CSEB · I inds

)
(5)

P = a (diag ([p(�r1) p(�r2) · · · p(�rM )])) (6)

Gdom,CSEB =Gdom − a−1diag

× [fΩ(�r1) fΩ(�r2) · · · fΩ(�rM )] . (7)

For this model, the DNL is measured using ‖P ·
Gdom,CSEB‖.

IV. SUBSPACE-BASED TECHNIQUES

FOR RECONSTRUCTION

A. Subspace-Inspired Initial Guess of the Contrast Function

Since the operator Gsca is noninjective for extended scatter-
ers [8], we cannot uniquely retrieve the induced currents using
(1). However, a stable portion of the induced currents can be
retrieved using a subspace of Gsca specified by a regularization

parameter L. The induced current I
ind
s is split as I

ind
s = I

det
s +

I
amb
s , where I

det
s is the deterministic current and I

amb
s is the

ambiguous current. If the left singular vectors, right singular
vectors, and the singular values are denoted by ul, vl, and σl,

then I
det
s and I

amb
s are represented as

I
det
s =

L∑
l=1

αlvl ; I
amb
s = Vamb · αamb

s (8)

where Vamb = [vL+1 vL+2 . . . vM ] and αl, l = 1 to L, is

computed analytically as αl = (u∗
l · E

sca
s )/σl. Setting I

amb
s as

a null vector, an estimate of E
tot
s = (E

inc
s +Gdom · Idets ) is

computed. Then, using back propagation, an initial guess of the
contrast function is computed.

B. Subspace-Based Optimization Model for CSEB Model

The SOM, introduced in [8], is adapted here for the CSEB

model. The computation of the deterministic current I
det
s has al-

ready been discussed in Section IV-A. The vector αamb
s [shown

in (8)] contains the unknown coefficients of the vectors in
Vamb and is computed using iterative optimization as described
hereinafter. The cost function is defined as

Δ
(
P, αamb

s ; s = 1 to Ns

)
=

Ns∑
s=1

⎛
⎜⎝

∥∥∥Δfie
s

∥∥∥2∥∥Esca
s

∥∥2 +

∥∥∥Δsta
s

∥∥∥2∥∥∥Idets

∥∥∥2
⎞
⎟⎠
(9)

where Δ
fie
s = Gsca · Idets +Gsca ·Vamb · αamb

s − E
sca
s ,

Δ
sta
s = A · αamb

s −Bs, Bs = P · (Einc
s +Gdom,CSEB ·

I
det
s )− I

det
s , and A = (IM −P ·Gdom,CSEB) ·Vamb. SOM

performs the minimization of the residues in both field and
state equations so that SOM is less sensitive to the choice
of L. More details can be found in [6] and [23]. We use
CSI-like optimization scheme similar to that in [6] and [11].
In particular, conjugate gradient is used for αamb

s and back
propagation for P. We make a note that, although we use the
same value of L for the initial guess as well as SOM, different
values of L may be used in practice.

V. NUMERICAL EXAMPLES

We consider two algorithms for numerical experiments.

1) Algorithm with CSEB model [17], [18] and CSI-like
optimization scheme [11], which shall be referred to
as simply CSEB. We highlight that the optimization
scheme is different from the scheme used in [18] and the



AGARWAL et al.: IMPROVING THE PERFORMANCES OF CSEB INVERSION METHOD 393

TABLE I
DESCRIPTION OF PERMITTIVITY PROFILE OF THE EXAMPLES

reconstruction results may be influenced by the optimiza-
tion scheme used as well. For all the simulation results
presented in this letter, the cost function for CSEB is

Δ
(
P, αamb

s ; s=1 to Ns

)
=

Ns∑
s=1

⎛
⎜⎝

∥∥∥Δfie
s

∥∥∥2∥∥Esca
s

∥∥2 +
∥∥∥Δsta

s

∥∥∥2∥∥∥P · Einc
s

∥∥∥2
⎞
⎟⎠
(10)

where P is the last updated contrast function.
2) Algorithm with CSEB model and SOM (as presented in

Section IV), which shall be referred to as CSEB-SOM.
For CSEB-SOM, the cost function in (9) shall be used.

If the initial guess for the contrast is computed by the method
introduced in Section IV-A, the aforementioned two algorithms
are referred to as CSEB(INI) and CSEB-SOM(INI), where INI
refers to the proposed initial guess scheme. In addition, we
consider CSEB-SOM(BG), where BG refers to the background
and the initial guess of the contrast function is taken to be
close to zero. We highlight that, in the previous publications on
CSEB inversion methods [18]–[21], the contrast function was
represented using Fourier basis. It means that the regularization
was incorporated through this projection. Differently, in this
letter, we consider the CSEB model alone, without Fourier
basis projection. We represent the contrast function using a
unit pulse function defined on each pixel as the basis. The
various algorithms are compared using the same basis so that
the comparison is fair.

We consider four examples to study the effect of the proposed
initial guess and SOM on the reconstruction. The permittivity
profiles of the scatterers and the DNL [18] are tabulated in
Table I. The region Ω is of square shape of size 0.8 m. The
operating frequency is 300 MHz. In each example, there is
a circular scatterer of radius 0.2 m, centered at (0,0.1) m.
The scatterers have high contrast as compared to vari-
ous examples traditionally considered in inverse scattering
problems.

It is assumed that the measurements are noisy with an
SNR of 20 dB. The termination condition is Δ < 10−2,
and the value of the regularization parameter L is chosen
such that 20 log10(σ1/σL+1) > 20 (roughly corresponding to a
20-dB SNR) [23], which corresponds to L = 5. The maximum
number of iterations is limited to 200 for examples 1 and 2
and 500 for examples 3 and 4. Forty line sources and detectors
(Ns = Nd = 40) are placed uniformly over a circle of radius
2 m with its center coinciding with the center of Ω. All the
forward simulations use a grid size of 64 × 64, and the inverse

Fig. 1. Cost function and reconstruction error for all the examples with an
SNR of 20 dB. The cost functions of CSEB(INI), CSEB-SOM(BG), and CSEB-
SOM(INI) are quite close to each other such that they appear as overlapping.

procedures used a grid size of 32 × 32. In order to quantify the
error in reconstruction, we use the following metric:

Error=

√√√√∑
m

|εact(�rm)−εrec(�rm)|2
/∑

m

|εact(�rm)|2 (11)

where the superscripts “act” and “rec” denote actual and recon-
structed permittivities, respectively.

The convergence curves for examples 1–4 are presented in
Fig. 1(b)–(e), respectively. Both the cost function and the recon-
struction error are plotted as a function of the iteration number.
The reconstruction results are presented in Fig. 2 for all the four
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Fig. 2. Reconstruction results for all the examples for an SNR of 20 dB. (A1–D1) Real part of the relative permittivity. (A2–D2) Imaginary part of the relative
permittivity. (A1 and A2) Actual values. (B1 and B2) CSEB(INI). (C1 and C2) CSEB_SOM(BG). (D1 and D2) CSEB-SOM(INI).

examples. Since examples 1–3 consider lossless background,
they are difficult to reconstruct for CSEB [18]. This is verified
in the convergence characteristics. However, by simply using
the initial guess proposed in Section IV-A [CSEB(INI)] or using
SOM for optimization [CSEB-SOM(BG)], it leads to the CSEB
reconstructions to converge to true permittivity profile. Further-
more, if both the initial guess and SOM are employed [i.e.,
CSEB-SOM(INI)], there is an additional, although marginal,
improvement in the reconstruction error.

Example 4 is interesting because, although the contrast of
the scatterer is very high, the medium is somewhat lossy.
CSEB(INI), CSEB-SOM(BG), and CSEB-SOM(INI) can re-
construct the scatterer with reasonable accuracy. Furthermore,
from the reconstructed permittivity profiles in the last column
of Fig. 2, it can be noted that CSEB(INI) and CSEB-SOM(INI)
give better qualitative reconstruction than CSEB-SOM(BG),
which emphasizes the importance of the initial guess.

VI. COMPARISON OF CS AND CSEB MODELS

It is of interest to compare the CS model with the CSEB
model for high-contrast scatterers. We consider an example in
which there are four scatterers, all of them with high contrast.
The details of the experiment are presented in Fig. 3. We
compare the CS model with CSI optimization scheme (referred
to as CS), CS model with SOM (CS-SOM), CSEB, and CSEB-
SOM. For a fair comparison, we use the same initial guess
(computed using Section IV-A) for all the four algorithms.
The convergence curves of the four algorithms are shown in
Fig. 4. It is seen that, although CS and CSEB have lower values
of the cost function for all the iterations [see Fig. 4(a)], the
reconstruction error of CSEB and CSEB-SOM is lower than
that of CS and CS-SOM [see Fig. 4(b)]. The reconstruction
results are presented in Fig. 5. Although the results of these
four algorithms look similar, it is still interesting to note that CS
and CS-SOM provide a slightly better reconstruction of the real
part of the relative permittivity, particularly for the scatterers 2

Fig. 3. Example 5: Permittivity profiles of the scatterers. (a) Real (εr).
(b) Imaginary (εr). (c) Details of the scatterers.

Fig. 4. Convergence characteristics of the various models (each using the
initial guess proposed in Section IV-A) for example 5 (see Section VI). (a) Plot
of the cost function. (b) Plot of the reconstruction error.

and 4 (with lower real part of relative permittivity than the
background). However, CSEB-SOM gives the relatively best
reconstruction for the imaginary part of relative permittivity of
all the four scatterers and the real part of relative permittivity
for scatterers 1 and 3.
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Fig. 5. Reconstruction results for the various models (each using the initial
guess proposed in Section IV-A) for example 5 (see Section VI).

VII. CONCLUSION

In this letter, it is shown that the performances of the CSEB
method can be improved using the stable portion of the induced
currents in two ways, i.e., by computing a good initial guess of
the contrast function and by using SOM as the optimization
method. Starting from subspace techniques, the aim of this
letter has been to demonstrate that the CSEB model intro-
duced and tested in [1] and [17] can be further improved and
effectively used for reconstructing very high contrast targets,
embedded into lossless as well as lossy backgrounds. As a
consequence, this letter successfully extends the applicability
of CSEB inversion method to many interesting and challenging
cases.
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