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Analysis of cutoff wavelength of elliptical waveguide by
regularized meshless method
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SUMMARY

In this paper, the regularized meshless method (RMM) coetbiwith the determinant rule is taken
to analyze the cutoff wavelength of elliptical waveguidethvarbitrary eccentricity. First, an improved
desingularization technique of subtracting and addingkbia introduced for RMM to discretize this
problem. Then the novel local minimum finding technique bas® Chebfun is applied to extract the cutoff
wavelength from the determinant of the interpolation nmxabfi RMM. The numerical examples show the
RMM gets consistent results with the conventional methodunflamental solutions, but has advantage
of well-conditioning and no fictitious boundary. Our methmavides another highly effective and stable
candidate to solve the cutoff wavelength of elliptical wgwiele. Copyright© 0000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The elliptical waveguides have been studied for severahdiex and are widely used in various
microwave componentd]. The calculation of the cutoff wavelength of elliptical vegguides is
important for the waveguide design and wave propagatiolysisaA large number of techniques
have been presented and one of the first known paper was ov@uitfz]. Most of these methods
are based on the cumbersome roots finding for the modifiedidatnctions of the first kind.
In recent years, some new methods have been proposed tafgiaapd improve the solution
calculation of cutoff wavelength. We only list some recemigress about this issue. 18]] Mei and
Xu calculated the cutoff wavelength of the dominant modédliptecal waveguide by the transverse
resonance technique. Tsogketsal. [4] provided the exact closed-form algebraic expressions of
cutoff wavelength for elliptical metallic waveguide witmall values of eccentricity. In5], Shu
analyzed the elliptical waveguides with arbitrary ellgity by the differential quadrature method
(DQ), which combines with the coordinate transform to deighwhe elliptical shape boundary. In

*Correspondence to: Department of Electrical and Computeirieering, National University of Singapore, 117576
Singapore. Email: elesongr@nus.edu.sg (Song), and ebe@heus.edu.sg (Chen).

Copyright© 0000 John Wiley & Sons, Ltd.
Prepared usingnmauth.cls [Version: 2010/03/27 v2.00]



2 SONG RC, CHEN XD

[6], Jianget al. presented a meshless collocation method with the Wendéhdlbasis functions.
Their method can deal with the elliptical domain directly.

Besides these methods, Youegal. [7] presented a simple and high-accuracy method based
on the method of fundamental solutions (MFS) together whh gingular value decomposition
(SVD). Different from p, 6], this method is a boundary type meshless method, whichndoes
need to discretize the interior domain. Its basic idea isgordtize the cutoff wavelength problem
by the MFS and form a matrix equation taking the unknown dui@ivelength)\. as parameter.
Then the SVD is employed to determing. However, the MFS has two main drawbacks such as
the fictitious boundary and ill-conditioned interpolatioratrix. Its solution accuracy and stability
depend seriously on the locations of source nodes. Themang remedial methods to overcome
these two issues of MFS. The regularized meshless methodViRMO] is one of the best
candidates. It takes the double layer potential as bast$iumand is also a boundary type meshless
method. The RMM in 10] applies the desingularization technique of subtractimdj adding-back
so as to choose the source nodes coincident with the cabboaaddes on the physical boundary. It
has been successfully applied in various numerical stydi<.1, 12, 13, 14], which show that the
RMM keeps all merits of the MFS but overcome the disadvargagentioned before. Particularly,
the RMM has been used ifj] to solve the acoustic eigenproblem with multiply-conmeaiomain.
However, the conventional RMM is mostly used in regular dompaoblems due to the limitation of
desingularization techniquéf). It requires the nodes distribute uniformly on the boudesich
is difficult or impossible to realize in irregular domainse\Whowed a modified desingularization
technique in 16] such that the RMM can deal with arbitrary domain problems.

In this study, we will introduce a further improved desingyigation technique for RMM such
that it can solve the cutoff wavelength of elliptical wavatgiand in addition remove the numerical
integral calculation needed iif]. Then the RMM is taken to discretize the cutoff wavelength
problem and the determinant rule is chosen to figure out theffomavelength. Since the cutoff
wavelength\. corresponds to local minimum of the non-smooth determifuanttion, the generally
used Newton method fails. Usually the time-consuming sicenmethod, i.e., plotting figure with
very fine grid, is used to find the local minima. Besides the &dficiency, the scanning method
may also miss the correct solution if its step is too largethia paper, we will introduce a novel
local minimum finding technique based on Chebfu?]] To summarize, our paper has three
contributions. Firstly, we introduce the RMM with improveesingularization technique to deal
with elliptical boundary so as to overcome the disadvant@igthe MFS in [/]. Secondly, the
local minimum finding technique based on Chebfun is used fwone the efficiency and stability.
Thirdly, numerical comparisons between our method and tR& I[A] will also be provided.

In this paper, only the TM mode is considered to illustrate agorithm. The structure of this
paper is as follows. Sectighintroduces the problem and reviews the MFS. Our proposedades
presented in SectioB Numerical examples are shown in SectibrFinally, conclusions are made
in Sectionb.
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CUTOFF WAVELENGTH OF ELLIPTICAL WAVEGUIDE BY RMM 3
2. THE PROBLEM AND THE MFS METHOD

2.1. The problem

The cutoff wavelength of TM mode for two dimensional ellgati waveguide satisfies
V3¢ +r2d =0, 1)

whereg(z,y) = E.(x,y), k. = 2/ . is the cutoff wavenumber, and. is the cutoff wavelength.
The TM wave satisfies the Dirichlet boundary condition (BC)

¢lr = E.|r =0, 2

wherel is the elliptical boundary satisfying

OO ©

The parameters andb are the semi-major and semi-minor axes respectively. Sa/a? — b?/a is
the eccentricity. Our aim is to solve for elliptical waveguides with different eccentricities.

2.2. The MFS method
We briefly introduce the MFS in7]. Let

N
$(t) =Y _a;Glt.s;), (4)
Jj=1

wheret = (z,y) is node in the solution domair{,s;}_, are source nodes, anfdy;}Y , are
unknown coefficients. The basis functiofS(t,s;)} ., of the MFS for2-D Helmholtz equation

are B]
Glt,s)) = =7 Hy (rr(ts;), §=1.2... . NinR, (5)

wherei = /-1, HéQ)(m(t, s;j)) is the zero order of second kind Hankel function, ads;) =
lIs; — t|l2. The basis functions in EquatioB)(satisfy the Helmholtz equation. Thus, the MFS is a
boundary-only meshless method.

As seen in Equations], there is a singularity in Hankel function when= 0. Thus, the MFS
selects the source nod(afﬁ}j\’:l on a fictitious boundary outside the domain. For our probkée,
source nodes of MFS are set on a larger ellipse with the sacem&iity as boundarly, see Figure
1. Suppose the fictitious ellipse has semi-major axis lengthv > 1).

Since the basis function satisfies the governing equati@\i~S only needs to match the BC at
the M boundary nodes, namely,

N
$(ti) =Y a;Gti,s;) =0, i=1,2,... M. (6)
j=1
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model(0000)
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Figure 1. Nodes distribution. (a) MFS; (b) RMM.

For easy of comparing with RMM, we supposé = N hereafter. It means the same number of
collocation and source nodes are used in MFS. By this cdilmtéechnique, we rewrite Equation
(6) in matrix form as

B(M)a =0, @)

whereB(\) = (G(t;, s;))nxn IS the coefficient matrix withh = 27/« as parameter, and is the
unknown coefficient vector.

As previously mentioned, theoreticall(\) should be singular wheh = \.. According to this
property,\. can be solved by searching the zeros of

f1(A) = min(svd(B(\))) (8)

or
fa(A) = [det(B(A))], ©)

wheremin(svd(B()))) indicates the minimal singular value B \) and| det(B(\))| is the absolute
value of its determinant. In7], the SVD function f;(\) is applied, while we will take use of
Equation 9) in our method. In practical computation, only finite numio¢basis functions are
taken to approximate(t). Thus, the obtained interpolation matrix(\) may be nonsingular
even at the cutoff wavelength. In such case, the roots seardf f;()),j = 1,2 is numerically
meaningless. Actually, if we také(¢, s;) = —c%Hé”(m(t, s;j)) as the basis function for the MFS
wherec is a constant value. This doesn’t change the solution of tR&MHowever, the value of
f2(\) = | det(ecB()\))| = | det(B()\))| can be arbitrarily large it is properly chosen. Thus, in
our computation, the local minima g§(\) are solved instead of searching its roots, so as for the
following RMM. If not specifically specifiedf, is denoted ag hereafter.
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CUTOFF WAVELENGTH OF ELLIPTICAL WAVEGUIDE BY RMM 5
3. THE REGULARIZED MESHLESS METHOD

3.1. The RMM

To solve the problem in Equations)(and @), the RMM takes the double layer potential functions
as basis functionsl, 15
itk t—si),n; .
T(t,55) = - B0 (ot 5, L2000

2,...,N 10
’]’(t787) ) ) Y ) ( )

WhereHl(l)(-) is the first order of the first kind Hankel function, the sign) indicates the inner
product of two vectors, and; is the outward normal direction aj. As seen]’(t, s;) satisfies the
governing Helmholtz equation. So RMM is also a boundanetymeshless method.

Although the basis function in Equatiofid) has singularity, a desingularization technique was
introduced in 0] such that the source nodes can be coincident with the @illmtnodes on the
domain boundary, see FiguteWe will briefly introduce this technique, point out its stage, and
then improve it.

As shown in [LO], T'(¢, s;) has the same order singularity as the RMM basis function &mldce
equation 13, 15] whent approaches tg;, namely,

tlim_ T(t,s;) = tlim_ A(t, sj), (11)
<(t - Sj)? nj>
T(tv Sj)Q

The desingularization technique of subtracting and adtanck is based on the discretization of
the reduced null-fields equatio$, [L(]

whereA(t, s;) = — is the double layer potential of Laplace equatiaf][
/ A@(t,, )dT(s) = 0, t; € D*, (12)
r

whereA(©) has the opposite normal direction with andD¢ is the exterior domain ab. According
to the relation ofA(®) and A, there is [LO]

A(ti,Sj) = _A(e)(tiasj)7 Z;é], (13)
A(tiasj):A(e)(tiaSj)? Z:j
In the RMM, Equation12) is discretized as
N
> A€t 5l =0, teT, (14)
j=1

where|l;| is the half distance between the source nades ands; 1. Generally, the nodefs;; } [,
are supposed to be uniform in RMM such tl{a‘m};\f:l are equal for differenj. Thus, Equation
(14) can be reduced to

N
> A€t s;) =0, teT. (15)
j=1
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model(0000)
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By collocating on boundary nodes, we get

ot )= 57 (i s5)

"Mz WMz

<
Il
-

N
BiT(tis5) — Bi Y A (L, 55)
Jj=1

N
BiT(ti,s5) + Bi 4 Y Alti s5) — Alti, 54)

I
.MZ

=1 i
Jj=1
N N
= BT (tis;) + 8 Y Alti,sj), ti €T, (16)
J#i J#i
7j=1 7j=1

Then the diagonal elements of RMM ihl, 13] are given by

Aty si) ZAtl,sJ 1=1,2,...,N. a7
iz
Obviously, the bounded diagonal elements in Equatiof &re obtained based on the assumption
that the source nodes are uniformly distributed. Howevsrdifficult to meet this condition for
arbitrary shape domain problems.
A simple improvement of this problem can be obtained diyefitdm Equations 13) and (L4) as

Alti, si) = A (t;,8) = |ZA ti, s, i=1,2,...,N. (18)

7 1

In [16], we have verified the validity of the diagonal elements inu&iipn (L8). However, the curve
Iengths{|lj|}§-\7:1 need to be computed by numerical integration, which in@gé#se computational
complexity and burden. Next, we will introduce a further noyed desingularization technique
without quadrature, while still keeps the solution accyraied is valid for arbitrary shape domains.
To describe in a general sense, we suppose the boundaryltusvenooth, closed and can be
represented as
x=p(0), y=q(f), 0€l0,2n], (19)

wherep, ¢ € C1[0, 27]. The case of piecewise smodtitan be treated similarly and is not discussed
here. Based on Equatiohq), the null-fields equationl@) can be rewritten as

/ A©) (4, 5)dD(1) = / ” A (1(0;),s(0)/P' ()2 + ¢ (0)2d6 = / % Gi(6)dd =0,  (20)
I 0 0

whereG; (0) = A© (£(6;), s(0)/P(0)2 + ¢ ().
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CUTOFF WAVELENGTH OF ELLIPTICAL WAVEGUIDE BY RMM 7

Then EquationZ0) is discretized by the composite trapezoidal integratide [20], and we get

2

—1
h > [Gi(0k) + Gi(Okt1)]

2m 1
G;(0)df ~ =
N-1

=1 (21)

I
|
=
2
=
+
[\
o
=
+
o
™
-’

whereh = QW” andf, = kh, k=0,1,..., N. Here we supposé&’;(0) = G;(2r) sincel is closed.
It should be indicated that different; can also be employed in Equatiofl}, which ensures the
meshfree property of the RMM.

Denoteg; = /p’'(6:)? + ¢'(6;)2. Thus, from EquationZ1) there is

A(ti,si) = A( tZ,S = ——ZA(e tusk gk = —ZA ti, Sk gk7 (22)
k;éz k;ﬁl
k=1 k=1

wherdt;, s;) = (t(6:), s(6;)). It is highlighted that our numerical results of RMM in thelfning
sections are all computed with the diagonal elements in &muél?2). It has the same accuracy as
the RMM with diagonal elements in Equatiob8j but without the numerical integration.

3.2. The cutoff wavelength searching based on Chebfun

This section introduces the technique that extracts thénmoim values that correspond i@ from
Equation 0). A well-known theorem is

Theorem 3.1

Suppose functiorf is smooth orim,n] where its first and second order derivatives both exist. If
there isq € (m,n) such thatf’(¢) = 0 and f”(¢q) > 0, then(q, f(q)) is a local minimum node of
on[m,n].

However, as we indicated before, the two functions in Equeti8) and Q) are only piecewise
smooth. They have some sharp nodes where their derivativésekit. Fortunately, Chebfurl[/]
has the ability to deal with such troublesome problem. It detect the location of discontinuities
and has a global rootfinding capability no matter the fumcisssmooth or not. Thus, we can still use
the rule provided in Theore@ 1to determine the... Actually, the functionf will be approximated
piecewisely by the Chebyshev polynomial in Chebfun. Thendérivatives off can be computed
accordingly. Since it has already been indicated preciseliteratures L7, 18, 19], we will not
introduce more details about the principle used in Chebfeme.hOur contribution is to use this
powerful technique of Chebfun and to verify its ability tohsothe cutoff wavelength problem.
For convenience, we give the Matlab code of Chebfun in Fi@in@here the output parameter
'locaLminimd contains the cutoff wavelength.. We refer to this cutoff wavelength searching

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model(0000)
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% approxi mate f(lanbda) by Chebyshev series on [mn]
chebfun_f = chebfun( @l anbda) f(lanbda), [mn],
"splitting’ ,’ on’,’vectorize');

% find extrena

r=roots(diff(chebfun f));

% extract m ni ma

| ocal _minima = r(feval (diff(chebfun_f,2),r) > 0);

% pl ot sol ution

pl ot (chebfun_f); hold on

pl ot (I ocal _m ni ma, chebfun_f(local _mnim), or’); hold off

Figure 2. The Matlab code of Chebfun to search the cutoff Veaggh.

method based on Chebfun as the CWcheb for short. For coropatie conventionally used cutoff
wavelength searching method based on figure plotting isdalé the CWscan.

4. NUMERICAL EXPERIMENT

The proposed algorithm is tested with various numericatgas and compared with the MF§ [
The analytical cutoff wavelength results if] pre taken as reference solutions. All the calculations
are dimensionless. In all examples, the semi-major axiol @lliptical waveguide is set a).
And the figures off (\) are all plotted under th&) base logarithmic scale.

4.1. Comparison of the RMM and MFS with CWscan

As known, the CWscan method is reliable as long as the scagrstép is small enough. Thus, we
first verify the validity of the RMM combined with CWscan andmapare it with the MFS. In Figure
3, the figures off (\) defined in Equation9) are plotted withe = 0.5 and0.9 by the CWscan. Each
local minimum corresponds to one cutoff wavelength. We @mtke results of RMM agree well
with the MFS results. Particularly, it can be observed thgmitade off(\) for the RMM is much
larger than that of the MFS. This is because the interpaiatiatrix A of the RMM is diagonally
dominantand its determinant is almost equaﬂ[jhlA(j, J), which is numerically very large even if
A = A.. This phenomenon also shows the reasonability of using tte fninimum finding instead
of the root searching for the determinant functjtt\).

We also study the influence of the source nodes location osdhsion accuracy of the MFS.
Figure4 shows the MFS solutions ef= 0.9 with two different fictitious BCs. We can see the MFS
gets exact solutions when = 1.3 while gets totally distorted solutions when= 1.05. Since it
removes the need of fictitious sources boundary, the adyamfegRMM is obvious.

4.2. Comparison of the RMM and MFS with CWcheb

As known, the CWscan is time-consuming. Thus, we will testdapability of the RMM and MFS
combined with CWcheb. We take= 0.9 for example and the results are shown in FighréVe
can see the RMM results are accurate and stable when the nood®er changed fronV = 25 to
N = 60. It indicates the CWcheb is not sensitive for the RMM when thdas number increased.
However, the MFS results are only accurate whéen- 25 andw = 1.3. The CWcheb fails for the

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model(0000)
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€=0.5 (RMM,N=25) €=0.5 (MFS,N=25,w=1.3)

29

28.5r

f(\)

28

27.5¢

27 i i i i i i i i i i i g i i i i i i i i i i i
080951112514 15517185 2 21523245 0.8 0.951.1 1.25 1.4 1.55 1.7 1.85 2 2.15 2.3 2.45
A A

(@) (b)

€=0.9 (RMM,N=25) €=0.9 (MFS,N=25,w=1.3)

32

f(A)

295 i i i i i i i i i i i i
056 071 086 101 116 131 146 056 071 086 101 116 131 146
A A

(© (d)

Figure 3. Thef(\) curves of TM mode foe = 0.5 and0.9.

e=0.9 (MFS,N=25)
-5 .

-10

‘ w=1.05,distorted ‘

-15

f(A)

=25

Figure 4. Thef(\) curves by MFS with different fictitious source boundaries.

MFS whenN = 25, w = 1.4 andN = 40, w = 1.3. It shows the change of source nodes number or
fictitious boundary location of the MFS may distort the CWehesults.
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To analyze the reason behind this phenomenon, the conditiotbers (CNs) of interpolation
matrices of the RMM and MFS are plotted in Fig&(). We can see the CNs of the MFS are much
higher than the RMM. And the CNs of the RMM are almost unchangkenN increases. From
Figureb, it can be observed the CWcheb only works when the CNs ardlowis becausé () will
vary very sharply when CN is large which makes the ChebysbBmnpmial approximation tg'()\)
too hard. It results the obtained approximate Chebyshexedncorrect and a lot of fictitious local
minimum appear. Different from the MFS, whose interpolaticatrices are usually ill-conditioned,
which prevents the use of CWcheb, the RMM is well-conditibaad can work with the CWcheb
smoothly. It shows the better compatibility of the RMM witiletCWcheb than the MFS.

4.3. Comparison of the solution accuracy and computing tfttke RMM and MFS

In this section, we check the accuracy of these two methduscuitoff wavelengths of the first nine
TM modes withe = 0.5 ande = 0.9 are shown in Tablesandll respectively. All these results of
the two methods are obtained with CWcheb. Ane- 1.3 is set for the MFS. We can see the MFS
results are usually more accurate than the RMM. As seen iie Taihe7th andsth analytical cutoff
wavelengths witle = 0.5 are very close. They are well distinguished in the MFS. Buh&RMM,

as limited by its solution accuracy, only single valu@241 (0.9246) lying inside these two exact
ones is obtained whelV = 25 (IV = 40). However, whenV increases t@0, the RMM also gets
two accurate results for them.

In Figure6, we plot the relative error curves for the cutoff wavelengftthe dominate TM mode
with different eccentricities. We find the solution accyratthe RMM improves whewv increases.
The MFS obtains a better accuracy is smaller thar.9. But opposite results are observed when
is close tol. The solution accuracy of the MFS degenerates quickly whsiarge. This is because
the choose of fictitious boundary for the MFS is more chalileg@n such case. However, it's not a
problem for the RMM.

The lower accuracy of the RMM compared to the MFS is due to #stngjularization technique
which employs the approximate discrete null fields equationontrast, the MFS takes the fictitious
boundary instead and no approximation is brought in. Howekie RMM solutions are also very
satisfied compared to the analytical ones. Most importattily RMM is much stable than the
MFS as mentioned before. It should also be noted that theseh€lresults in the two tables
are completely consistent with the CWscan results undestégelengthi0—*.

Tablelll shows the computing time for the results in Tablesdll by different methods on a
Intel Core i7 950 CPU computer. It can be seen our new methdbtMRombined with CWcheb)
is much faster than the previous one (MFS combined with CWscEhe CWcheb reduces the
computing time of the RMM obviously. The longest computiimge belongs to the MFS combined
with CWcheb. This is because ttfg\) curve of the MFS is too sharp and it costs a lot of time
to do the Chebyshev approximation in Chebfun. However, tidéckeb can solve all the cutoff
wavelength together without worrying to lose solutionssiBes, we can also see the computing
time of CWcheb increases slightly when the searching segerdarged. This is another advantage
of CWcheb over the CWscan.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model(0000)
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€=0.9 (RMM,N=25) €=0.9 (RMM,N=60)

32

31.5r

31r

f(\)

30.5

30

29,5 i i i i 5 i i i i
0.56 0.76 0.96 1.16 1.36 0.56 0.76 0.96 1.16 1.36

A A

@) (b)

€=0.9 (MFS,N=25,w=1.3) €=0.9 (MFS,N=25,w=1.4)

f(\)

0.56 0.76 0.96 1.16 1.36 0.56 0.76 0.96 116 1.36
A A

(© (d)

e=0.9 (MFS,N=40,w=1.3) Cond viah: e=0.9

—— MFS:w=1.3,N=25

. —=— MFS:w=1.4,N=25
1077 —6— MFS:w=1.3,N=4(
—o— CTRMM:N=40

—+— CTRMM:N=60

f(A)

Cond Number

0.56 0.76 0.96 1.16 1.36
A

(€) (f)

Figure 5. (a)-(e): thg()\) curves approximated by Chebfun; (f): the condition number
curves of the MFS and RMM with = 0.9.

5. CONCLUSION

This paper develops the RMM for solving the cutoff waveléngf elliptical waveguide and

compares it with the MFS. We introduce an improved desinguation technique that makes the
conventional RMM be applicable for arbitrary shape domawbfems. Furthermore, instead of
employing the commonly used scanning method, the novel focamum finding technique based
on Chebfun is combined with RMM for the first time to search¢beoff wavelength. It can reduce
notably the computing time of the RMM and avoid to lose solu$i. The numerical simulations
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(00090900006,,5060006600° T 0060 nuts. L
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e

Figure 6. The relative error curves of dominant TM mode wiffecent eccentricities.

show the RMM results are more stable than the MFS in two aspieimely, it avoids the fictitious
boundary and has better compatibility with the CWcheb. Tdwiecy of the RMM is a little lower
than the MFS but it's still satisfied. Our method providestarogood candidate to solve the cutoff
wavelength of elliptical waveguide. The property of the RMillows it to be well applicable in
other waveguides with different shapes.
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Table 1. Cutoff wavelength of TM mode with= 0.5

Analytical MFS RMM
No. Ref[1]

N=25 N=25 N=40 N =60
1 2.4196 2.4198 2.4130 2.4153 2.4167
2 1.5762 1.5762 1.5711 1.5736 1.5747
3 1.4673 1.4674 1.4679 1.4670 1.4669
4 1.1652 1.1652 1.1598 1.1630 1.1641
5 1.1336 1.1336 1.1355 1.1339 1.1336
6 1.0303 1.0303 1.0301 1.0301 1.0302
7 0.9289 0.9289 0.9241 0.9246 0.9275
8 0.9208 0.9208 \ \ 0.9216
9 0.8478 0.8477 0.8472 0.8475 0.8476

Table II. Cutoff wavelength of TM mode with= 0.9
Analytical MFS RMM
No. Ref[1]

N=25 N=25 N=40 N =60
1 1.4906 1.4925 1.4894 1.4898 1.4901
2 1.1607 1.1600 1.1598 1.1601 1.1603
3 0.9375 0.9377 0.9363 0.9368 0.9371
4 0.8093 0.8109 0.8085 0.8090 0.8091
5 0.7803 0.7804 0.7808 0.7802 0.7801
6 0.7083 0.7083 0.7081 0.7082 0.7082
7 0.6651 0.6653 0.6646 0.6647 0.6649
8 0.6262 0.6265 0.6262 0.6261 0.6261
9 0.5780 0.5783 0.5756 0.5771 0.5776
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Table Ill. Computing time of different methods

e Time(s) CWcheb CWscan
0.5 RMM 5.6 18.6

’ MFS 21.8 17.1
0.9 RMM 5.9 10.3

’ MFS 19.8 9.5
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