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Analysis of cutoff wavelength of elliptical waveguide by
regularized meshless method
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SUMMARY

In this paper, the regularized meshless method (RMM) combined with the determinant rule is taken
to analyze the cutoff wavelength of elliptical waveguide with arbitrary eccentricity. First, an improved
desingularization technique of subtracting and adding-back is introduced for RMM to discretize this
problem. Then the novel local minimum finding technique based on Chebfun is applied to extract the cutoff
wavelength from the determinant of the interpolation matrix of RMM. The numerical examples show the
RMM gets consistent results with the conventional method offundamental solutions, but has advantage
of well-conditioning and no fictitious boundary. Our methodprovides another highly effective and stable
candidate to solve the cutoff wavelength of elliptical waveguide. Copyright c© 0000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The elliptical waveguides have been studied for several decades and are widely used in various

microwave components [1]. The calculation of the cutoff wavelength of elliptical waveguides is

important for the waveguide design and wave propagation analysis. A large number of techniques

have been presented and one of the first known paper was owed toChu [2]. Most of these methods

are based on the cumbersome roots finding for the modified Mathieu functions of the first kind.

In recent years, some new methods have been proposed to simplify and improve the solution

calculation of cutoff wavelength. We only list some recent progress about this issue. In [3], Mei and

Xu calculated the cutoff wavelength of the dominant mode in elliptical waveguide by the transverse

resonance technique. Tsogkaset al. [4] provided the exact closed-form algebraic expressions of

cutoff wavelength for elliptical metallic waveguide with small values of eccentricity. In [5], Shu

analyzed the elliptical waveguides with arbitrary ellipticity by the differential quadrature method

(DQ), which combines with the coordinate transform to deal with the elliptical shape boundary. In
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[6], Jianget al.presented a meshless collocation method with the Wendland radial basis functions.

Their method can deal with the elliptical domain directly.

Besides these methods, Younget al. [7] presented a simple and high-accuracy method based

on the method of fundamental solutions (MFS) together with the singular value decomposition

(SVD). Different from [5, 6], this method is a boundary type meshless method, which doesn’t

need to discretize the interior domain. Its basic idea is to discretize the cutoff wavelength problem

by the MFS and form a matrix equation taking the unknown cutoff wavelengthλc as parameter.

Then the SVD is employed to determineλc. However, the MFS has two main drawbacks such as

the fictitious boundary and ill-conditioned interpolationmatrix. Its solution accuracy and stability

depend seriously on the locations of source nodes. There aremany remedial methods to overcome

these two issues of MFS. The regularized meshless method (RMM) [10] is one of the best

candidates. It takes the double layer potential as basis function and is also a boundary type meshless

method. The RMM in [10] applies the desingularization technique of subtracting and adding-back

so as to choose the source nodes coincident with the collocation nodes on the physical boundary. It

has been successfully applied in various numerical studies[10, 11, 12, 13, 14], which show that the

RMM keeps all merits of the MFS but overcome the disadvantages mentioned before. Particularly,

the RMM has been used in [15] to solve the acoustic eigenproblem with multiply-connected domain.

However, the conventional RMM is mostly used in regular domain problems due to the limitation of

desingularization technique [16]. It requires the nodes distribute uniformly on the boundary, which

is difficult or impossible to realize in irregular domains. We showed a modified desingularization

technique in [16] such that the RMM can deal with arbitrary domain problems.

In this study, we will introduce a further improved desingularization technique for RMM such

that it can solve the cutoff wavelength of elliptical waveguide and in addition remove the numerical

integral calculation needed in [16]. Then the RMM is taken to discretize the cutoff wavelength

problem and the determinant rule is chosen to figure out the cutoff wavelength. Since the cutoff

wavelengthλc corresponds to local minimum of the non-smooth determinantfunction, the generally

used Newton method fails. Usually the time-consuming scanning method, i.e., plotting figure with

very fine grid, is used to find the local minima. Besides the lowefficiency, the scanning method

may also miss the correct solution if its step is too large. Inthis paper, we will introduce a novel

local minimum finding technique based on Chebfun [17]. To summarize, our paper has three

contributions. Firstly, we introduce the RMM with improveddesingularization technique to deal

with elliptical boundary so as to overcome the disadvantageof the MFS in [7]. Secondly, the

local minimum finding technique based on Chebfun is used to improve the efficiency and stability.

Thirdly, numerical comparisons between our method and the MFS [7] will also be provided.

In this paper, only the TM mode is considered to illustrate our algorithm. The structure of this

paper is as follows. Section2 introduces the problem and reviews the MFS. Our proposed method is

presented in Section3. Numerical examples are shown in Section4. Finally, conclusions are made

in Section5.
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CUTOFF WAVELENGTH OF ELLIPTICAL WAVEGUIDE BY RMM 3

2. THE PROBLEM AND THE MFS METHOD

2.1. The problem

The cutoff wavelength of TM mode for two dimensional elliptical waveguide satisfies

∇2φ + κ2
cφ = 0, (1)

whereφ(x, y) = Ez(x, y), kc = 2π/λc is the cutoff wavenumber, andλc is the cutoff wavelength.

The TM wave satisfies the Dirichlet boundary condition (BC)

φ|Γ = Ez|Γ = 0, (2)

whereΓ is the elliptical boundary satisfying

(x

a

)2

+
(y

b

)2

= 1. (3)

The parametersa andb are the semi-major and semi-minor axes respectively. Soe =
√

a2 − b2/a is

the eccentricity. Our aim is to solveλc for elliptical waveguides with different eccentricities.

2.2. The MFS method

We briefly introduce the MFS in [7]. Let

φ(t) =

N
∑

j=1

αjG(t, sj), (4)

where t = (x, y) is node in the solution domain,{sj}N
j=1 are source nodes, and{αj}N

j=1 are

unknown coefficients. The basis functions{G(t, sj)}N
j=1 of the MFS for2-D Helmholtz equation

are [8]

G(t, sj) = − i

4
H

(2)
0 (κr(t, sj)), j = 1, 2, . . . , N in R

2, (5)

wherei =
√
−1, H

(2)
0 (κr(t, sj)) is the zero order of second kind Hankel function, andr(t, sj) =

‖sj − t‖2. The basis functions in Equation (5) satisfy the Helmholtz equation. Thus, the MFS is a

boundary-only meshless method.

As seen in Equation (5), there is a singularity in Hankel function whenr = 0. Thus, the MFS

selects the source nodes{sj}N
j=1 on a fictitious boundary outside the domain. For our problem,the

source nodes of MFS are set on a larger ellipse with the same eccentricity as boundaryΓ, see Figure

1. Suppose the fictitious ellipse has semi-major axis lengthwa(w > 1).

Since the basis function satisfies the governing equation, the MFS only needs to match the BC at

theM boundary nodes, namely,

φ(ti) =
N

∑

j=1

αjG(ti, sj) = 0, i = 1, 2, . . . , M. (6)
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( a ) ( b )c o l l o c a t i o n n o d es o u r c e n o d exb ayo w a ab xyo
Figure 1. Nodes distribution. (a) MFS; (b) RMM.

For easy of comparing with RMM, we supposeM = N hereafter. It means the same number of

collocation and source nodes are used in MFS. By this collocation technique, we rewrite Equation

(6) in matrix form as

B(λ)α = 0, (7)

whereB(λ) = (G(ti, sj))N×N is the coefficient matrix withλ = 2π/κ as parameter, andα is the

unknown coefficient vector.

As previously mentioned, theoretically,B(λ) should be singular whenλ = λc. According to this

property,λc can be solved by searching the zeros of

f1(λ) = min(svd(B(λ))) (8)

or

f2(λ) = | det(B(λ))|, (9)

wheremin(svd(B(λ))) indicates the minimal singular value ofB(λ) and| det(B(λ))| is the absolute

value of its determinant. In [7], the SVD functionf1(λ) is applied, while we will take use of

Equation (9) in our method. In practical computation, only finite numberof basis functions are

taken to approximateφ(t). Thus, the obtained interpolation matrixB(λ) may be nonsingular

even at the cutoff wavelength. In such case, the roots searching of fj(λ), j = 1, 2 is numerically

meaningless. Actually, if we takeG(t, sj) = −c i

4H
(2)
0 (κr(t, sj)) as the basis function for the MFS

wherec is a constant value. This doesn’t change the solution of the MFS. However, the value of

f2(λ) = | det(cB(λ))| = cN | det(B(λ))| can be arbitrarily large ifc is properly chosen. Thus, in

our computation, the local minima off2(λ) are solved instead of searching its roots, so as for the

following RMM. If not specifically specified,f2 is denoted asf hereafter.
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3. THE REGULARIZED MESHLESS METHOD

3.1. The RMM

To solve the problem in Equations (1) and (2), the RMM takes the double layer potential functions

as basis functions [10, 15]

T (t, sj) = − iπκ

2
H

(1)
1 (κr(t, sj))

〈(t − sj), nj〉
r(t, sj)

, j = 1, 2, . . . , N (10)

whereH
(1)
1 (·) is the first order of the first kind Hankel function, the sign〈·, ·〉 indicates the inner

product of two vectors, andnj is the outward normal direction atsj . As seen,T (t, sj) satisfies the

governing Helmholtz equation. So RMM is also a boundary-type meshless method.

Although the basis function in Equation (10) has singularity, a desingularization technique was

introduced in [10] such that the source nodes can be coincident with the collocation nodes on the

domain boundary, see Figure1. We will briefly introduce this technique, point out its shortage, and

then improve it.

As shown in [10], T (t, sj) has the same order singularity as the RMM basis function for Laplace

equation [13, 15] whent approaches tosj , namely,

lim
t→sj

T (t, sj) = lim
t→sj

A(t, sj), (11)

whereA(t, sj) = −〈(t − sj), nj〉
r(t, sj)2

is the double layer potential of Laplace equation [10].

The desingularization technique of subtracting and adding-back is based on the discretization of

the reduced null-fields equation [9, 10]

∫

Γ

A(e)(ti, s)dΓ(s) = 0, ti ∈ De, (12)

whereA(e) has the opposite normal direction withA, andDe is the exterior domain ofD. According

to the relation ofA(e) andA, there is [10]







A(ti, sj) = −A(e)(ti, sj), i 6= j,

A(ti, sj) = A(e)(ti, sj), i = j.
(13)

In the RMM, Equation (12) is discretized as

N
∑

j=1

A(e)(ti, sj)|lj | = 0, ti ∈ Γ, (14)

where|lj| is the half distance between the source nodessj−1 andsj+1. Generally, the nodes{sj}N
j=1

are supposed to be uniform in RMM such that{|lj|}N
j=1 are equal for differentj. Thus, Equation

(14) can be reduced to
N

∑

j=1

A(e)(ti, sj) = 0, ti ∈ Γ. (15)
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By collocating on boundary nodes, we get

φ(ti) =

N
∑

j=1

βjT (ti, sj)

=
N

∑

j=1

βjT (ti, sj) − βi

N
∑

j=1

A(e)(ti, sj)

=

N
∑

j=1

βjT (ti, sj) + βi















N
∑

j 6=i
j=1

A(ti, sj) − A(ti, si)















=

N
∑

j 6=i
j=1

βjT (ti, sj) + βi

N
∑

j 6=i
j=1

A(ti, sj), ti ∈ Γ. (16)

Then the diagonal elements of RMM in [11, 13] are given by

A(ti, si) =
N

∑

j 6=i
j=1

A(ti, sj), i = 1, 2, . . . , N. (17)

Obviously, the bounded diagonal elements in Equation (17) are obtained based on the assumption

that the source nodes are uniformly distributed. However, it’s difficult to meet this condition for

arbitrary shape domain problems.

A simple improvement of this problem can be obtained directly from Equations (13) and (14) as

A(ti, si) = A(e)(ti, si) =
1

|li|

N
∑

j 6=i
j=1

A(ti, sj)|lj |, i = 1, 2, . . . , N. (18)

In [16], we have verified the validity of the diagonal elements in Equation (18). However, the curve

lengths{|lj|}N
j=1 need to be computed by numerical integration, which increases the computational

complexity and burden. Next, we will introduce a further improved desingularization technique

without quadrature, while still keeps the solution accuracy and is valid for arbitrary shape domains.

To describe in a general sense, we suppose the boundary curveΓ is smooth, closed and can be

represented as

x = p(θ), y = q(θ), θ ∈ [0, 2π], (19)

wherep, q ∈ C1[0, 2π]. The case of piecewise smoothΓ can be treated similarly and is not discussed

here. Based on Equation (19), the null-fields equation (12) can be rewritten as

∫

Γ

A(e)(ti, s)dΓ(l) =

∫ 2π

0

A(e)(t(θi), s(θ))
√

p′(θ)2 + q′(θ)2dθ =

∫ 2π

0

Gi(θ)dθ = 0, (20)

whereGi(θ) = A(e)(t(θi), s(θ))
√

p′(θ)2 + q′(θ)2.
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CUTOFF WAVELENGTH OF ELLIPTICAL WAVEGUIDE BY RMM 7

Then Equation (20) is discretized by the composite trapezoidal integration rule [20], and we get

∫ 2π

0

Gi(θ)dθ ≈ 1

2
h

N−1
∑

k=0

[Gi(θk) + Gi(θk+1)]

=
1

2
h[Gi(0) + 2

N−1
∑

k=1

Gi(θk) + Gi(2π)]

= h

N
∑

k=1

Gi(θk)

= 0,

(21)

whereh = 2π
N

andθk = kh, k = 0, 1, . . . , N. Here we supposeGi(0) = Gi(2π) sinceΓ is closed.

It should be indicated that differenthj can also be employed in Equation (21), which ensures the

meshfree property of the RMM.

Denotegi =
√

p′(θi)2 + q′(θi)2. Thus, from Equation (21) there is

A(ti, si) = A(e)(ti, si) = − 1

gi

N
∑

k 6=i

k=1

A(e)(ti, sk)gk =
1

gi

N
∑

k 6=i

k=1

A(ti, sk)gk, (22)

where(ti, si) = (t(θi), s(θi)). It is highlighted that our numerical results of RMM in the following

sections are all computed with the diagonal elements in Equation (22). It has the same accuracy as

the RMM with diagonal elements in Equation (18) but without the numerical integration.

3.2. The cutoff wavelength searching based on Chebfun

This section introduces the technique that extracts the minimum values that correspond toλc from

Equation (9). A well-known theorem is

Theorem 3.1

Suppose functionf is smooth on[m, n] where its first and second order derivatives both exist. If

there isq ∈ (m, n) such thatf ′(q) = 0 andf ′′(q) > 0, then(q, f(q)) is a local minimum node off

on [m, n].

However, as we indicated before, the two functions in Equations (8) and (9) are only piecewise

smooth. They have some sharp nodes where their derivatives don’t exit. Fortunately, Chebfun [17]

has the ability to deal with such troublesome problem. It candetect the location of discontinuities

and has a global rootfinding capability no matter the function is smooth or not. Thus, we can still use

the rule provided in Theorem3.1to determine theλc. Actually, the functionf will be approximated

piecewisely by the Chebyshev polynomial in Chebfun. Then the derivatives off can be computed

accordingly. Since it has already been indicated preciselyin literatures [17, 18, 19], we will not

introduce more details about the principle used in Chebfun here. Our contribution is to use this

powerful technique of Chebfun and to verify its ability to solve the cutoff wavelength problem.

For convenience, we give the Matlab code of Chebfun in Figure2, where the output parameter
′local minima′ contains the cutoff wavelengthλc. We refer to this cutoff wavelength searching

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model.(0000)
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% approximate f(lambda) by Chebyshev series on [m,n]
chebfun_f = chebfun(@(lambda) f(lambda), [m,n],
’splitting’,’on’,’vectorize’);
% find extrema
r= roots(diff(chebfun_f));
% extract minima
local_minima = r(feval(diff(chebfun_f,2),r) > 0);
% plot solution
plot(chebfun_f); hold on
plot(local_minima,chebfun_f(local_minima),’or’); hold off

Figure 2. The Matlab code of Chebfun to search the cutoff wavelength.

method based on Chebfun as the CWcheb for short. For comparison, the conventionally used cutoff

wavelength searching method based on figure plotting is called as the CWscan.

4. NUMERICAL EXPERIMENT

The proposed algorithm is tested with various numerical examples and compared with the MFS [7].

The analytical cutoff wavelength results in [1] are taken as reference solutions. All the calculations

are dimensionless. In all examples, the semi-major axis of each elliptical waveguide is set as1.0.

And the figures off(λ) are all plotted under the10 base logarithmic scale.

4.1. Comparison of the RMM and MFS with CWscan

As known, the CWscan method is reliable as long as the scanning step is small enough. Thus, we

first verify the validity of the RMM combined with CWscan and compare it with the MFS. In Figure

3, the figures off(λ) defined in Equation (9) are plotted withe = 0.5 and0.9 by the CWscan. Each

local minimum corresponds to one cutoff wavelength. We can see the results of RMM agree well

with the MFS results. Particularly, it can be observed the magnitude off(λ) for the RMM is much

larger than that of the MFS. This is because the interpolation matrixA of the RMM is diagonally

dominant and its determinant is almost equal toΠN
j=1A(j, j), which is numerically very large even if

λ = λc. This phenomenon also shows the reasonability of using the local minimum finding instead

of the root searching for the determinant functionf(λ).

We also study the influence of the source nodes location on thesolution accuracy of the MFS.

Figure4 shows the MFS solutions ofe = 0.9 with two different fictitious BCs. We can see the MFS

gets exact solutions whenw = 1.3 while gets totally distorted solutions whenw = 1.05. Since it

removes the need of fictitious sources boundary, the advantage of RMM is obvious.

4.2. Comparison of the RMM and MFS with CWcheb

As known, the CWscan is time-consuming. Thus, we will test the capability of the RMM and MFS

combined with CWcheb. We takee = 0.9 for example and the results are shown in Figure5. We

can see the RMM results are accurate and stable when the nodesnumber changed fromN = 25 to

N = 60. It indicates the CWcheb is not sensitive for the RMM when the nodes number increased.

However, the MFS results are only accurate whenN = 25 andw = 1.3. The CWcheb fails for the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Model.(0000)
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Figure 3. Thef(λ) curves of TM mode fore = 0.5 and0.9.

0.56 0.71 0.86 1.01 1.16 1.31 1.46
−30
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−15

−10
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λ

f(
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Figure 4. Thef(λ) curves by MFS with different fictitious source boundaries.

MFS whenN = 25, w = 1.4 andN = 40, w = 1.3. It shows the change of source nodes number or

fictitious boundary location of the MFS may distort the CWcheb results.
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To analyze the reason behind this phenomenon, the conditionnumbers (CNs) of interpolation

matrices of the RMM and MFS are plotted in Figure5(f). We can see the CNs of the MFS are much

higher than the RMM. And the CNs of the RMM are almost unchanged whenN increases. From

Figure5, it can be observed the CWcheb only works when the CNs are low.This is becausef(λ) will

vary very sharply when CN is large which makes the Chebyshev polynomial approximation tof(λ)

too hard. It results the obtained approximate Chebyshev curve incorrect and a lot of fictitious local

minimum appear. Different from the MFS, whose interpolation matrices are usually ill-conditioned,

which prevents the use of CWcheb, the RMM is well-conditioned and can work with the CWcheb

smoothly. It shows the better compatibility of the RMM with the CWcheb than the MFS.

4.3. Comparison of the solution accuracy and computing timeof the RMM and MFS

In this section, we check the accuracy of these two methods. The cutoff wavelengths of the first nine

TM modes withe = 0.5 ande = 0.9 are shown in TablesI andII respectively. All these results of

the two methods are obtained with CWcheb. Andw = 1.3 is set for the MFS. We can see the MFS

results are usually more accurate than the RMM. As seen in Table I, the7th and8th analytical cutoff

wavelengths withe = 0.5 are very close. They are well distinguished in the MFS. But inthe RMM,

as limited by its solution accuracy, only single value0.9241 (0.9246) lying inside these two exact

ones is obtained whenN = 25 (N = 40). However, whenN increases to60, the RMM also gets

two accurate results for them.

In Figure6, we plot the relative error curves for the cutoff wavelengthof the dominate TM mode

with different eccentricities. We find the solution accuracy of the RMM improves whenN increases.

The MFS obtains a better accuracy ife is smaller than0.9. But opposite results are observed whene

is close to1. The solution accuracy of the MFS degenerates quickly whene is large. This is because

the choose of fictitious boundary for the MFS is more challenging in such case. However, it’s not a

problem for the RMM.

The lower accuracy of the RMM compared to the MFS is due to the desingularization technique

which employs the approximate discrete null fields equation. In contrast, the MFS takes the fictitious

boundary instead and no approximation is brought in. However, the RMM solutions are also very

satisfied compared to the analytical ones. Most importantly, the RMM is much stable than the

MFS as mentioned before. It should also be noted that these CWcheb results in the two tables

are completely consistent with the CWscan results under thestep length10−4.

TableIII shows the computing time for the results in TablesI andII by different methods on a

Intel Core i7 950 CPU computer. It can be seen our new method (RMM combined with CWcheb)

is much faster than the previous one (MFS combined with CWscan). The CWcheb reduces the

computing time of the RMM obviously. The longest computing time belongs to the MFS combined

with CWcheb. This is because thef(λ) curve of the MFS is too sharp and it costs a lot of time

to do the Chebyshev approximation in Chebfun. However, the CWcheb can solve all the cutoff

wavelength together without worrying to lose solutions. Besides, we can also see the computing

time of CWcheb increases slightly when the searching segment enlarged. This is another advantage

of CWcheb over the CWscan.
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Figure 5. (a)-(e): thef(λ) curves approximated by Chebfun; (f): the condition number
curves of the MFS and RMM withe = 0.9.

5. CONCLUSION

This paper develops the RMM for solving the cutoff wavelength of elliptical waveguide and

compares it with the MFS. We introduce an improved desingularization technique that makes the

conventional RMM be applicable for arbitrary shape domain problems. Furthermore, instead of

employing the commonly used scanning method, the novel local minimum finding technique based

on Chebfun is combined with RMM for the first time to search thecutoff wavelength. It can reduce

notably the computing time of the RMM and avoid to lose solutions. The numerical simulations
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Figure 6. The relative error curves of dominant TM mode with different eccentricities.

show the RMM results are more stable than the MFS in two aspects. Namely, it avoids the fictitious

boundary and has better compatibility with the CWcheb. The accuracy of the RMM is a little lower

than the MFS but it’s still satisfied. Our method provides another good candidate to solve the cutoff

wavelength of elliptical waveguide. The property of the RMMallows it to be well applicable in

other waveguides with different shapes.
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Table I. Cutoff wavelength of TM mode withe = 0.5

No. Analytical
Ref[1]

MFS RMM

N = 25 N = 25 N = 40 N = 60

1 2.4196 2.4198 2.4130 2.4153 2.4167
2 1.5762 1.5762 1.5711 1.5736 1.5747
3 1.4673 1.4674 1.4679 1.4670 1.4669
4 1.1652 1.1652 1.1598 1.1630 1.1641
5 1.1336 1.1336 1.1355 1.1339 1.1336
6 1.0303 1.0303 1.0301 1.0301 1.0302
7 0.9289 0.9289 0.9241 0.9246 0.9275
8 0.9208 0.9208 \ \ 0.9216
9 0.8478 0.8477 0.8472 0.8475 0.8476

Table II. Cutoff wavelength of TM mode withe = 0.9

No. Analytical
Ref[1]

MFS RMM

N = 25 N = 25 N = 40 N = 60

1 1.4906 1.4925 1.4894 1.4898 1.4901
2 1.1607 1.1600 1.1598 1.1601 1.1603
3 0.9375 0.9377 0.9363 0.9368 0.9371
4 0.8093 0.8109 0.8085 0.8090 0.8091
5 0.7803 0.7804 0.7808 0.7802 0.7801
6 0.7083 0.7083 0.7081 0.7082 0.7082
7 0.6651 0.6653 0.6646 0.6647 0.6649
8 0.6262 0.6265 0.6262 0.6261 0.6261
9 0.5780 0.5783 0.5756 0.5771 0.5776

Table III. Computing time of different methods

e Time(s) CWcheb CWscan

0.5
RMM 5.6 18.6
MFS 21.8 17.1

0.9
RMM 5.9 10.3
MFS 19.8 9.5
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