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This paper introduces a general inversion method to simultaneously reconstruct
scatterers with different boundary conditions such as Dirichlet, Neumann, Robin,
and transmission boundaries without a priori information on their locations,
shapes, or physical properties. The forward scattering of mixed scatterers is
modeled by a unified framework of T-matrix method, while the objective function
considered in the inverse problem is solved by a subspace-based optimization
method. The unknowns are T-matrix coefficients, from which the types of bound-
ary conditions of scatterers are identified. Numerical examples show that this
method is able to recover not only the shapes of scatterers but also their physical
properties and parameters.

Keywords: inverse scattering; T-matrix method; four boundary conditions;
subspace based optimization

AMS Subject Classifications: 65N21; 65N20; 78M16; 78M50

1. Introduction

Inverse scattering is a kind of widely used technique to determine characteristics of scatterers
such as their locations, shapes and material properties from measured scattered field. Various
inverse scattering methods [1–4] have been proposed and widely applied in geological
exploration, through wall imaging and remote sensing et al. To the best of our knowledge,
most known inverse scattering methods are designed with particular prior information on
physical properties of the unknown scatterers. For example, the scatterer should be known
as dielectric medium [5–7] or perfect electric conductor (PEC) a priori.[8–11] However, in
practical problems, the individual targets to be reconstructed are possible to have different
boundary conditions (BCs) simultaneously such as Dirichlet, transmission or Robin et al.
This is one of the main motivations of the current study.

It should be indicated that there are already some qualitative inverse scattering methods
like linear sampling method [12,13] that can retrieve shapes of scatterers with mixed BCs.
However, this qualitative method can not further classify the physical characteristics of
scatterers. Therefore, there is a demand to develop a quantitative method to solve such
problems. It is well known that this is a challenging task. There are two main difficulties
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2 R. Song et al.

to be overcome, i.e. finding a uniform framework to model the scattering phenomenon
of different types of scatterers and developing criteria to further classify their physical
properties.

For this aim, recently, we have introduced a T-matrix method [14] to simultaneously
retrieve dielectric and PEC scatterers without any prior information. The T-matrix method is
a conventional method to solve scattering problems. It was firstly introduced by Waterman
[15] and further developed by Chew and Wang [16], Otto and Chew [17,18], Lin and Chew
[19]. Before,[14] the original T-matrix inversion method was thought to work with a known
boundary type of scatterers. In T-matrix method, scatterers are firstly divided into a set
of subunits. Then both the incident and scattered fields are expanded on each subunit as
functions of multipoles. The coefficients of scattered field are related to that of the incident
field through T-matrix which is determined from BCs. Different properties of scatterers
own different T-matrices.[20] This property makes the T-matrix method become a good
candidate to model scattering phenomenon of mixed boundary scatterers.

In [14], both monopole and dipole terms were employed in the multipole expansion but
only the monopole term exists in most original T-matrix inversions. This is because there
exists magnitude difference between dielectric and PEC T-matrix coefficients. Therefore,
it can ensure the accuracy of dielectric-PEC mixed boundaries scattering. The PEC was
differentiated from dielectric scatterers by the recovered zeroth-order T-matrix coefficient,
i.e. the coefficient of monopole term. It has been shown that this classification criterion
works well to distinguish dielectric scatterers (even lossy) from PEC.

In this paper, we further extend our work in [14] to a more general case. Four types
of BCs including Dirichlet, Neumann, impedance and transmission boundaries are consid-
ered simultaneously. It covers most commonly used BCs in electromagnetic or acoustic
wave scattering problems. To the best of authors’ knowledge, this is the first paper to
discuss a quantitative inversion method to retrieve scatterers with four types of BCs.
The scattering phenomenon of mixed boundary scatterers is still modeled in a T-matrix
framework. The boundary types of recovered scatterers can be classified according to
the different characteristics of T-matrix coefficients. Compared with [14], the problem
considered in this paper is more challenging and complicated for the following two reasons:
(1) Obviously it is much more difficult to classify four boundary conditions than two;
(2) Some boundary conditions exhibit similarities under certain conditions. For example,
scatterer with impedance boundary can only be conditionally differentiated from that with
Dirichlet or Neumann boundary due to their close relation on physical properties. New
classification criterion should be provided to do so. Finally, as seen, T-matrix method is a
pixel based inversion method. We will discuss about the uniqueness of T-matrix method for
recovering the scatterers with mixed boundaries.

The structure of this paper is as follows. In Section 2, the forward scattering model
with T-matrix method is introduced. Then the inverse scattering method based on subspace
based optimization is discussed in Section 3. Numerical examples are shown in Section 4.
Finally, conclusions are made in Section 5.

2. The forward scattering problem and T-matrix method

2.1. The governing equations of forward scattering problem

The forward scattering problem aims to solve the scattered field due to presence of scat-
terers illuminated by a sequence of incident waves. In this paper, we consider only two
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Inverse Problems in Science and Engineering 3

Figure 1. Sketch of scattering problem with mixed boundary conditions.

dimensional scattering problems. The domain of interest D is supposed to be bounded,
where nonmagnetic scatters with different types of BCs are inside, as shown in Figure 1.
Suppose there are a total of Ninc plane waves at a single frequency (wavenumber is k)
illuminated evenly from transmitters (Tx) outside D. For each incidence, the scattered
fields are measured by Nr receivers (Rx) located at r̄q , q = 1, 2, . . . , Nr as depicted in
Figure 1.

We first briefly introduce the governing equations of two dimensional forward scattering
problem with different BCs. For a given incidence, the total field u(x, y) outside scatterers
satisfies

∇2u + k2u = 0, in R
2\S (1)

where k = 2π/λ is the wavenumber of incident wave in the background medium, λ is the
wavelength of incident wave and S = ⋃

S j is the total boundary of all scatterers.
The scattered field can be determined once we know the BCs which reflect intrinsic

characteristics of scatterers. Four kinds of BCs, namely, Dirichlet, Neumann, Robin and
transmission conditions will be considered simultaneously. In electromagnetics, they corre-
spond to PEC, PMC, impedance and dielectric scatterers, respectively. While in acoustics,
they correspond to sound soft, sound hard, impedance and transmission scatterers.

Take the four scatterers in Figure 1 for example. The first scatterer owns Dirichlet BC
that satisfies

u = 0, on ∂S1. (2)

The second scatterer satisfies Neumann BC

∂u

∂n
= 0, on ∂S2 (3)

where n is the normal direction of the scatterer boundary.
The third one satisfies Robin BC

∂u

∂n
+ iηku = 0, on ∂S3 (4)

where η > 0 is the impedance.

D
ow

nl
oa

de
d 

by
 [

N
U

S 
N

at
io

na
l U

ni
ve

rs
ity

 o
f 

Si
ng

ap
or

e]
 a

t 2
1:

55
 1

1 
Ju

ne
 2

01
4 



4 R. Song et al.

The fourth scatterer has transmission BC that is

u|∂S−
4

= u|∂S+
4
,

∂u

∂n
|∂S−

4
= ζ

∂u

∂n
|∂S+

4
. (5)

For electromagnetic waves with transverse (with respect to the z-axis) magnetic (TMz)
polarization, ζ is equal to 1. For acoustic wave, ζ can be other values. For the transmission
BC, the total field inside scatterer satisfies

∇2u + k2
r u = 0, in S4 (6)

where kr is the wavenumber inside the scatterer.

2.2. The T-matrix method of forward scattering problem

In this section, we briefly introduce the T-matrix method to solve the governing equations
in Section 2.1. More details about T-matrix method can be found in [14] and references
therein.

For a single small scatterer, the T-matrix relates the multipole expansion coefficients of
the incident field to those of its scattered field. Suppose there is a standalone cylindrical
scatterer whose center is located at C̄0 = (r0, θ0) and its M th order T-matrix is given
as ¯̄T = diag([Tm]),m = −M, . . . ,M with M as the truncation number of multipoles.
Suppose the observation point is at t̄ under the global coordinate. The cylindrical scatterer
is illuminated by an incident field, which can be represented by the multipole expansion
as Rg�̄ t (k, t̄ ′) · ē0 = ∑M

−M Rg[�(k, t̄ ′)]m · [ē0]m , where t̄ ′ = t̄ − C̄0 = (ρ0, φ0) is
under the local coordinate of the current scatterer at C̄0. Here Rg indicates the regular
part of Hankel function and [�̄ t (k, t̄ ′)]m = H (1)

m (kρ0)eimφ0 ,m = −M, . . . ,M . ē0 is the
multiple expansion coefficients of the incident filed. For a plane wave, ē0 has explicit
form which can be found in [14,21]. Both the vectors �̄ and ē0 have dimension 2M + 1.
According to the definition of T-matrix, the scattered field can be written by usca

(
t̄
) =∑M

−M [�(k, t̄ ′)]m · Tm · [ē0]m . The examples of calculating the Tm will be introduced in
Section 2.3.

Next, we derive the scattering equation using the T-matrix representation for general
scatterers. Suppose the domain of interest D is discretized into N subunits and each subunit
is small enough which can be well approximated by a circle of the same area. And the
center of each circle is at C̄i = (r0,i , θ0,i ), i = 1, 2, . . . , N under the global coordinate.
The field at t̄ (also under a global coordinate) outside all scatterers can be represented by
the multipole expansion and addition theorem as [21]

utot (
t̄
) = Rg�̄ t (

k, t̄ ′i
) · ēi +

N∑
j=1

�̄ t
(

k, t̄ ′j
)

· ā j , i = 1, 2, . . . , N (7)

where the first term of right hand side is the incident field on the i th subunit and the second
term is the scattered field from all the subunits. Here t̄ ′i = t̄ − C̄i = (ρi , φi ), i = 1, 2, . . . , N
is under the local coordinate of the i th subunit. The vectors ā j , j = 1, 2, . . . , N also have
a dimension 2M + 1 and they are referred as the vectors of amplitude of the induced
multipoles.

The total incident field on the i th subunit can be further expressed as the summation of the
background incident field and the multiple scattered fields from other subunits. Therefore,
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Inverse Problems in Science and Engineering 5

we can split Equation (7) into the total incident field (the first two terms in Equation (8))
onto the i th subunit and the scattered field off it

utot (
t̄
) = Rg�̄ t (

k, t̄ ′i
) · ēi +

N∑
j=1, j �=i

�̄ t
(

k, t̄ ′j
)

· ā j + �̄ t (
k, t̄ ′i

) · āi , i = 1, 2, . . . , N .

(8)
As known, the translational addition theorem enables one to represent the scattered field

from other scatterers as a form of the incident field to one scatterer. Namely, there is

�̄ t
(

k, t̄ ′j
)

= Rg�̄ t (
k, t̄ ′i

) · ¯̄αi j , (9)

where ¯̄αi j is the translational matrix given in [22]. The substitution of Equation (9) into
Equation (8) yields

utot (
t̄
) = Rg�̄ t (

k, t̄ ′i
) ·

⎡
⎣ēi +

N∑
j=1, j �=i

¯̄αi j · ā j

⎤
⎦+�̄ t (

k, t̄ ′i
) · āi , i = 1, 2, . . . , N . (10)

The first term in Equation (10) means the total incident field on the i th subunit and the
second term means the scattered field off it. Thus, from the definition of the T-matrix, we
easily obtain,

āi = ¯̄Ti ·
⎡
⎣ēi +

N∑
j=1, j �=i

¯̄αi j · ā j

⎤
⎦ . (11)

Combining Equation (11) on all subunits into one matrix equation, we have

ā = ¯̄O ·
[
ē − ¯̄A · ā

]
(12)

where [ ¯̄O]i i = ¯̄Ti and zero off-diagonal, [ ¯̄A]i j = −¯̄αi j for i �= j and zero otherwise,
[ā]i = āi and [ē]i = ēi .

The scattered field usca at the receiver position r̄q(q = 1, 2, . . . , Nr ) under global
coordinate can be obtained by

usca(r̄q) =
N∑

j=1

�̄ t
(

k, r̄ ′
j

)
· ā j (13)

where
[
�̄ t (k, r̄ j ′)

]
m = H (1)

m (kr j )eimψ j with m ∈ [−M,M], and r̄ ′
j = r̄q − C̄ j = (

r j , ψ j
)

is the local-coordinate representation of the receiver where the origin of the coordinate
system is placed at the center of the j th subunit.

Combining the Nr equations for all the receivers into one matrix equation, we have

ūsca = ¯̄� t · ā. (14)

Equations (12) and (14) are referred to as the state equation and the field equation, respec-
tively. For each incident field, the two unknowns ā and ūsca can be obtained by solving
these two equations together. Then all scattered fields {ūsca

j }Ninc
j=1 are measured and will be

used in inversion.
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6 R. Song et al.

2.3. The T-matrix coefficients and their asymptotic properties at kR ≈ 0

As known, the T-matrix coefficients are determined from boundary conditions. We briefly
introduce the derivations here for the easy understanding of readers. For more details,
please refer to [20] and references therein. All the derivations are under assumption that the
scatterer is circular and homogeneous. Suppose the radius of circular scatterer is R.

First the plane wave uinc = e−ikr cos(φ) can be represented as

uinc =
∞∑

m=−∞
Jm(kr)eim(φ−1/2π). (15)

The outgoing wave u1 needs to satisfy the radiation condition at infinity and therefore can
be represented as

u1 =
∞∑

m=−∞
bm H (1)

m (kr)eim(φ−1/2π). (16)

Inside the scatterer, the field u2 should be bounded at r = 0 and it is expanded as

u2 =
∞∑

m=−∞
cm Jm(krr)eim(φ−1/2π). (17)

By substituting the above filed expansions into boundary conditions (2), (3), (4) and (5)
at r = R, the corresponding T-matrix coefficients

[ ¯̄T
]

m
≡ bm are obtained. It should be

indicated that u2 is not required in the Dirichlet and Impedance boundary conditions. For
these two boundary conditions, the total field is u = uinc + u1.

Therefore, the mth order of T-matrix coefficients for Dirichlet BC in Equation (2) is[ ¯̄T
]

m
= − Jm(k R)

H (1)
m (k R)

. (18)

The mth order of T-matrix coefficients of Neumann BC in Equation (3) is[ ¯̄T
]

m
= − J ′

m(k R)

H (1)′
m (k R)

. (19)

The mth order of T-matrix coefficients of Robin BC in Equation (4) is[ ¯̄T
]

m
= − iηJm(k R)+ J ′

m(k R)

iηH (1)
m (k R)+ H (1)′

m (k R)
. (20)

It can be noticed that the coefficients of T-matrix for scatterers with Dirichlet and Neumann
BCs can also be obtained form Equation (20) by taking η = ∞ and η = 0, respectively.

Finally, the mth order of T-matrix coefficients of scatterer with transmission BC in
Equation (5) is [ ¯̄T

]
m

= ζkr Jm(k R)J ′
m(kr R)− k Jm(kr R)J ′

m(k R)

k H (1)′
m (k R)Jm(kr R)− ζkr J ′

m(kr R)H (1)
m (k R)

. (21)

The T-matrix coefficient in Equation (21) is consistent with the results in [14] where ζ = 1
and kr = k

√
εr with εr as the relative permittivity of scatterer.
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Inverse Problems in Science and Engineering 7

Table 1. The asymptotic expansions of T0 for small k R.

BC Re(T0) Im(T0)

Dirichlet − π2

4(ln (k R))2
π

2 ln (k R)

Neumann − 1
16π

2(k R)4 − 1
4π(k R)2

Robin − ηπ
2 k R η2π

2 ln (k R)(k R)2

Transmission −π2

16 (ζk2
r − k2)2 R4 1

4 (ζk2
r − k2)πR2

Practical scatterers with arbitrary shape and inhomogeneous physical parameters need
to be discretized into several subunits which are small enough. Therefore, each subunit is
assumed to be homogeneous and can be approximated by an equivalent circular subunit
with radius R. Then the T-matrix coefficients derived above for circular scatterer can be
used as a good approximation.

Because each subunit is small enough to ensure the validity of the T-matrix coefficients,
it is necessary to understand the asymptotic property of T0 when k R is small enough. Under
the assumption that k R approaches to zero, the asymptotic expansions of T0 for different
types of scatterers are summarized in Table 1.

3. Inversion algorithm

In this section, we first introduce the inversion algorithm with a subspace based optimization
(SOM).[7] Then the criterion to classify different BCs is discussed.

3.1. Subspace based optimization

Suppose the singular value decomposition of ¯̄� t is ¯̄� t · v̄ j = λ j ū j . Therefore, for one
incident field, the vector ā can be represented by

ā = ādet + ¯̄V · c̄ (22)

where ādet = ∑L
j=1

ū H
j ·ūsca

λ j
v̄ j and ¯̄V is composed by the rest (excluding the first L) of right

singular vectors. Here the value of L can be chosen according to the rules given in [7,23].
For one incident field, the cost functional is built according to (12) and (14) as

f (ā, ¯̄O) =
∥∥∥ūsca − ¯̄� t · ā

∥∥∥2
/
∥∥ūsca

∥∥2 +
∥∥∥ā − ¯̄O · [ē − ¯̄A · ā]

∥∥∥2
/ ‖ē‖2 . (23)

The unknowns are the multipole expansion coefficient ā and T-matrix coefficients ¯̄O .
The cost functional (23) is reformulated under the framework of subspace optimization

method which is found to significantly speed up the convergence and make the algorithm
perform robustly in the presence of noise.[5–7] So we have

f
(

c̄, ¯̄O
)

=
∥∥∥ ¯̄� t · ādet + ¯̄� t · ¯̄V · c̄ − ūsca

∥∥∥2
/
∥∥ūsca

∥∥2 +
∥∥∥ ¯̄D · c̄ − b̄

∥∥∥2
/

∥∥∥ādet
∥∥∥2

(24)

where ¯̄D = ( ¯̄V + ¯̄O · ¯̄A · ¯̄V ) · c̄ and b̄ = ¯̄O · (ē − ¯̄A · ādet )− ādet .
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8 R. Song et al.

When all Ninc incidences are considered, the total cost function can be written as

�tot
(

c̄ j ,
¯̄O
)

= 1

2

Ninc∑
j=1

f
(

c̄ j ,
¯̄O
)
. (25)

The variables c̄ j and ¯̄O in Equation (25) can be updated alternatively during the optimization
process.

Before next step, we want to clarify some concerns about the uniqueness of T-matrix
inversion for scatterers with mixed boundaries. It is known that the uniqueness of inverse
scattering problem for a single type boundary condition has been well established by
mathematicians.[24] However, to the best knowledge of the authors, there is little informa-
tion known for retrieving scatterers with four different boundary conditions simultaneously.
And this is out of the scope of our paper to theoretically prove its uniqueness. Since the
T-matrix coefficient of a given scatterer, regardless of boundary condition, is unique, we
simply suppose here that the T-matrix solution for mixed type inverse scattering problem
is also unique. Therefore, we will mainly focus on the numerical discussion about the
capability of T-matrix method to solve such problems.

After obtaining the T-matrix coefficients ¯̄O by optimization, we can further determine
other parameters of scatterers. For scatterer with Robin BC, the impedance can be further
obtained as

η = − i

k

T0k H (1)
1 (k R)+ k J1(k R)

T0 H (1)
0 (k R)+ J0(k R)

. (26)

For scatterer with transmission boundary, the recovered wavenumber of scatterer can
be obtained as

kr =
(

4Im(T0)

πR2
+ k2

) 1
2

. (27)

For electromagnetic scattering problem, the relative permittivity of dielectric scatterer can
be further obtained from Equation (27) as

εr = 1 + 4
Im(T0)

π(k R)2
. (28)

After getting the T-matrix coefficients ¯̄O and other related parameters, the next task is
to classify the types of scatterers which is introduced in next section.

3.2. The criterion to classify different scatterers

In this section, we introduce the criterion to classify different scatterers. Theoretically, both
T0 and T1 can be used in the classification. However, the magnitude of T1 is usually much
smaller than that of T0 and it leads to the inaccuracy of the recovered T1. Therefore, in
this paper, only T0 and its related variables f (T0) are used in the classification criterion.
Here f (T0) means related parameter derived from T0. For example, f (T0) can be η(T0) or
εr (T0).

Before we introduce the exact classification criterion, some assumptions and hints are
given first:
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Inverse Problems in Science and Engineering 9

Table 2. The order and sign of asymptotic expressions of T0 when k R is small.

BC
Re(T0) Im(T0)

Order Sign Order Sign

Dirichlet O

(
1

(ln(R))2

)
− O

(
1

ln(R)

)
−

Neumann O(R4) − O(R2) −
Robin O(R) − O(R2 ln(R)) −
Transmission O(R4) − O(R2) +

Table 3. The characteristics of impedance and permittivity obtained from T0 for different scatterers
when k R is small.

BC Impedance (η) Permittivity (εr )

Dirichlet infinite εr = 1 + 2
ln(k R)(k R)2

< 0

Neumann zero εr = 0 (O(R2))

Robin finite εr = 1 + 2η2 ln(k R) < 0
Transmission η = 0 (O(R)) εr > 1

(1) It is known that the Dirichlet and Neumann BCs have close relation to Robin
boundary if η = ∞ or η = 0. Therefore, the impedance η in Equation (4) is
supposed to be neither too large (acts like Dirichlet BC) nor too small (acts like
Neumann BC).

(2) In this paper, we only consider the case of kr > k for scatterers with transmission
boundary. In electromagnetics, it means the dielectric scatterer has positive contrast.
For the case of kr < k, it can be treated in a similar way and is not discussed here.

(3) The order of T0 for Dirichlet and Neumann scatterers is only dependent on the
wavenumber of incident wave and the size of discrete grid. Therefore, it is known
a priori before inversion. This information can be used in the classification.

(4) For the purpose of proving the concept, here we only consider the case of ζ = 1
for transmission BC. For other values of ζ , we can discuss for case of ζ > 1 and
ζ < 1, and the result will not be shown here.

Based on the asymptotic expressions of T0 in Table 1, their orders and signs are
listed in Table 2. The characteristics of η(T0) (by (26)) and εr (T0) (by (28)) are listed in
Table 3. The classification criterion for different scatterers are summarized as follows based
on information from Tables 2 and 3:

(1) Classify the imaginary part of Im(T0). Pixels with Im(T0) > 0 are classified to be
part of scatterer with transmission boundary.

(2) The rest pixels with Im(T0) < 0 include scatterers with possibly Dirichlet, Neumann
or Robin boundary conditions.They are further classified byη(T0) and εr (T0). Pixels
with η(T0) and εr (T0) both close to zero are seen as part of Neumann scatterer.

(3) For the remaining pixels with Im(T0) < 0, if η(T0) is very large, it is most possible
to be a part of Dirichlet scatterer. Otherwise, it’s seen as part of a Robin scatterer.
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10 R. Song et al.

It should be indicated that the asymptotic expansions in Table 3 are only valid under
assumption that k R is sufficiently small. In practical computation, the discrete grid may
not be so small. For example, the η(T0) of scatterer with transmission boundary has order
O(R). When R is not small enough, the real part of η for transmission boundary can be
some finite value which is easier to be confused with Robin BC etc. In that case, we also
need to consider the imaginary part of η which is one order smaller that its real part. These
characteristics can all be helpful in actual classification. Finally, we need to be aware that it
is difficult to differentiate the Dirichlet scatterers from the Robin ones. This is because the
reconstructed η(T0) is always finite for Dirichlet scatterer in practice.

4. Numerical simulations

In this section, the proposed method is tested through a lot of numerical examples. Firstly, the
experimental configuration is introduced. The wavenumber of incident wave in background
medium is k = 2π. It means the wavelength of incident wave in background medium is
λ = 1. The domain of interest for all the numerical examples is square of size 2λ× 2λ. The
domain is discretized into N = 35×35 square subunits by default unless other declaration.
Ninc = 10 plane incident waves are used to evenly illuminate the domain around a circle.
Nr = 30 receivers are symmetrically placed around a circle of radius 5λ. The synthetic
data is calculated by T-matrix method with M = 2 and 10% additive Gaussian white noise
is contaminated in the scattered field. In the inverse problem, M = 1 is chosen as the
truncation number of the multipoles. The results of M = 0 (only monopole) is chosen to
compute initial guess. The iteration steps with M = 0 is 20, while that for M = 1 (both
monopole and dipole) is 200.

Four examples will be tested by the T-matrix method. There is no prior information
about the number and physical characteristics of all the scatterers. As discussed before,
exact T0 as well as the reconstructed T̃0, η̃ and ε̃r (hereafter the ‘tilde’ symbol indicates the
reconstructed value) will be plotted for each example.

4.1. Example 1

The first example is introduced to verify the validity of the proposed T-matrix method and
show its resolution with complicated scatterers.

The scatterers are supposed to compose an Austria-like profile. Two circles and one ring
are considered simultaneously. The two circles are of radius 0.1λ and their center locations
are at (−0.7, 0.7)λ and (0.7, 0.7)λ, respectively. The center of the ring is at (0,−0.3)λ. Its
inner radius is 0.3λ and its outer radius is 0.6λ. The left circle has Dirichlet boundary, while
the right circle has Neumann boundary. The ring has transmission boundary with kr = √

2k.
We have run this example with N = 35 × 35 and N = 65 × 65, respectively. Firstly,

the reconstructed results of Example 1 with N = 35 × 35 are shown in Figure 2. As
discussed before, the key point to classify scatterers with mixed BCs lies in the accuracy of
the recovered T0 because the other two variables η and ε are both obtained from T0. From
Figure 2, it can be seen that both the real and imaginary parts of T0 are well reconstructed.
Then according to the criterion introduced in Section 3.2, we firstly identify the dielectric
scatterer by the imaginary part of T0. It can be seen that the ring is a dielectric scatterer with
transmission boundary condition and the relative permittivity is approximate to be 2. Since
the imaginary parts of the other two circular scatterers are negative, they are classified as
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Inverse Problems in Science and Engineering 11

Dirichlet, Neumann or Robin boundary. Then based on the results that the η̃ and ε̃ are close to
zero, it is concluded that the right small circle is a Neumann-boundary like scatterer. Finally,
the left small circle is most possibly to be a Dirichlet-boundary like scatterer because its
reconstructed η̃ is positive and large.

Furthermore, we run this example again with dense grid at N = 65 × 65. This is
to verify the accuracy of the above results, for both the synthetic measurements and the
inversion results of T-matrix method at N = 35×35. It is noted that synthetic measurements
obtained at N = 35 × 35 are quite similar as that at N = 65 × 65. The average relative

error (
‖ ¯̄usca

35 −¯̄usca
65 ‖F

‖ ¯̄usca
65 ‖F

× 100%) between them is 4.41% which is quite small and therefore we

take N = 35 × 35 as default discretization number. Correspondingly, the inversion results

obtained at N = 65 × 65 are shown in Figure 3. It can be seen the results are quite similar
as that obtained at N = 35 × 35. All scatterers are clearly reconstructed and classified.
It should be noted that the T-matrix values are dependent on the circular size, which is
controlled by discretization size and therefore are different from Figure 2.

Both the results of Example 1 with different grid sizes show that theT-matrix method own
good resolution to recover scatterers with complex shapes and mixed boundary conditions.
Since the grid size at N = 35 × 35 is small enough, we will test all the other examples
hereafter with this grid configuration.

4.2. Example 2

The second example is to further test the robustness of T-matrix method to retrieve scatterers
with complicated shapes. There are three scatterers, i.e. two circles together with one
rectangle. The two circles are of radius 0.1λ and their center locations are at (−0.5, 0.7)λ
and (0.5, 0.7)λ, respectively. The center of the rectangle is at (0, 0)λ with width as 1.2λ
and height as 0.5λ. The upper left circle has Dirichlet boundary, while the upper right circle

(a) (b) (c)

(d) (e) (f)

Figure 2. Inversion results of Example 1 (N = 35 × 35) with 10% Gaussian white noise. (a) Exact
real part of T0; (b) Reconstructed real part of T̃0; (c) Reconstructed relative permittivity ε̃r ; (d) Exact
imaginary part of T0; (e) Reconstructed imaginary part of T̃0; (f) Reconstructed impedance η̃.
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12 R. Song et al.

(a) (b) (c)

(d) (e) (f)

Figure 3. Inversion results of Example 1 (N = 65 × 65) with 10% Gaussian white noise. (a) Exact
real part of T0; (b) Reconstructed real part of T̃0; (c) Reconstructed relative permittivity ε̃r ; (d) Exact
imaginary part of T0; (e) Reconstructed imaginary part of T̃0; (f) Reconstructed impedance η̃.

(a) (b)

(d) (e) (f)

Figure 4. Inversion results of Example 2 with 10% Gaussian white noise. (a) Exact real part of T0;
(b) Reconstructed real part of T̃0; (c) Reconstructed relative permittivity ε̃r ; (d) Exact imaginary part
of T0; (e) Reconstructed imaginary part of T̃0; (f) Reconstructed impedance η̃.

owns Neumann boundary. The rectangle has transmission boundary with kr = √
2k. The

distances between all scatterers are much closer than Example 1 and therefore is thought
more difficult to solve.

The reconstructed results of this example are shown in Figure 4. From the recovered
real and imaginary parts of T0 as well as the ε̃r , it can be seen the rectangle has transmission
boundary condition and the relative permittivity is approximate to be 2. Furthermore, similar
as Example 1, the left circle is a Dirichlet-boundary like scatterer and the right circle is a
Neumann-boundary like scatterer. Finally, the convergence curves of the first two examples
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Inverse Problems in Science and Engineering 13

Figure 5. Convergence curves of Examples 1 and 2 with M = 1.

are shown in Figure 5. It can be seen the T-matrix method converges smoothly to its final
solutions. This example further shows that the proposed T-matrix method is stable to retrieve
mixed-type scatterers with complex shapes.

4.3. Example 3

The third example aims to evaluate the capability of the T-matrix method to classify all the
four kinds of scatterers.

In this example, there are four circles with equal radius 0.15λ and their centers are located
at (−0.65, 0.65)λ, (0.65, 0.65)λ, (−0.65,−0.65)λ and (0.65,−0.65)λ, respectively. The
center of interested domain is at (0, 0)λ. The upper left circle is a scatterer with Dirichlet
boundary. The upper right one owns Neumann boundary. The lower left one has transmission
boundary condition and kr = √

2k. The last lower right one has impedance boundary
condition and η = 1/π.

The results are shown in Figure 6. According to the inversion results and the criterion
introduced in Section 3.2, we firstly identify the dielectric scatterer by the imaginary part of
T0. It can be seen that the lower left circle is dielectric scatterer with transmission boundary
condition. Since the imaginary parts of the other three scatterers are negative, they are
classified as Dirichlet, Neumann or Robin boundary. From the values of T̃0, η̃ and ε̃r , the
boundary condition of the upper right scatterer can be classified as Neumann type. For the
left two scatterers, it can be seen their impedances are obviously positive values, especially
the upper left one. Therefore, this scatterer is most possibly to satisfy Dirichlet BC, while
the lower right one can be Robin BC. As we discussed before, it’s not easy to classify these
two kinds of scatterers clearly because the recovered impedance for scatterer with Dirichlet
boundary is always finite.

4.4. Example 4

The fourth example is to illustrate the limitation or difficulty of the proposed T-matrix
method to classify the Dirichlet or Neumann scatterers with the Robin ones due to their
close physical relations.
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14 R. Song et al.

(a) (b) (c)

(d) (e) (f)

Figure 6. Inversion results of Example 3 with 10% Gaussian white noise. (a) Exact real part of T0;
(b) Reconstructed real part of T̃0; (c) Reconstructed relative permittivity ε̃r ; (d) Exact imaginary part
of T0; (e) Reconstructed imaginary part of T̃0; (f) Reconstructed impedance η̃.

(a) (b) (c)

(d) (e) (f)

Figure 7. Inversion results of Example 4 with 10% Gaussian white noise. (a) Exact real part of T0;
(b) Reconstructed real part of T̃0; (c) Reconstructed relative permittivity ε̃r ; (d) Exact imaginary part
of T0; (e) Reconstructed imaginary part of T̃0; (f) Reconstructed impedance η̃.

Suppose there are four circles with the same shapes and locations but different boundary
conditions as example 3. The upper left circle has Robin BC and η = 1

10π . The upper right
one has Neumann BC (η = 0). The lower left one has Dirichlet BC (η = ∞). And the
fourth one has Robin BC with η = 10

π
. Theoretically, the upper two scatterers own similar

scattering behavior while the scattered field of the last two scatterers are nearly the same. This
is determined by their physical relations and it means that classification of these scatterers
with each other is not easy or impossible. The results in Figure 7 verify this conclusion.
It can be seen in Figure 7 that the locations and shapes of all scatterers are successfully
recovered. And all the four scatterers can be clearly divided into two groups (group 1: the
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Inverse Problems in Science and Engineering 15

upper two scatterers; group 2: the lower two scatterers) by the values of T0 and its related
ε̃r and η̃. But as expected, it’s difficult to further identify the physical properties of the two
scatterers within a group. This is the reason why we add assumption on η for Robin BC in
Section 3.2.

5. Conclusions

In this paper, we have introduced a T-matrix method to simultaneously reconstruct the
scatterers with different BCs like Dirichlet, Neumann, Robin, and transmission boundaries
without any prior information. The numerical results show that the introduced method is a
good inversion framework for scatterers with different boundary conditions. The locations
and shapes of all scatterers are well reconstructed while their physical characteristics are
further classified by the zeroth order coefficients of T-matrix and other related parameters.
We also indicate that the current classification criterion still has some limitations for
classifying scatterers with similar BCs. This is mainly due to the close physical properties
of scatterers. Since both monopole and dipole terms are employed in the current inversion,
the computational cost is larger than the conventional method of moment. Further work
can be done on accelerating the convergence and reducing the computational cost of the
proposed algorithm.
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