
1
T
o
c
v
[
p
m
k
h
t
h
i
o
t
s
m
f
n
n
t
r
u
k
t
t
o
s
w
l
m
c

c
t

1722 J. Opt. Soc. Am. B/Vol. 27, No. 9 /September 2010 Song et al.
Full-vectorial modal analysis for circular optical
waveguides based on the multidomain Chebyshev

pseudospectral method

Rencheng Song, Jianxin Zhu,* and Xuecang Zhang

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang, China
*Corresponding author: zjx@zju.edu.cn

Received December 11, 2009; revised June 26, 2010; accepted July 5, 2010;
posted July 6, 2010 (Doc. ID 121184); published August 9, 2010

What we believe to be a new one-dimensional full-vectorial mode solver for circular waveguides in step-index
optical fibers is introduced based on the multidomain Chebyshev pseudospectral method and the perfectly
matched layer. The formulations are derived with two transverse components on the radial axis in the cylin-
drical coordinate system. The electromagnetic fields are expanded inside each homogeneous layer by the
Chebyshev basis functions, and then matched rigorously at the radial discontinuities by the interface condi-
tions. The numerical analysis on the guided and leaky modes of the two layer air-clad fiber, hybrid surface
plasmon polariton, and Bragg fibers demonstrates the validity and good performance of the present method,
which has remarkably high accuracy and fast convergence. © 2010 Optical Society of America
OCIS codes: 060.0060, 000.4430.

t
v
e
t
s
t
s
fi
a
i
a
t
d
n
a
n
t
v
u
C
d
t
w
t
e
t
m
P
w
s

a
(
e
t

. INTRODUCTION
he accurate calculation of full-vectorial modes of circular
ptical waveguides is important for the design and appli-
ation of such waveguide structures in certain optical de-
ices. In the past few decades, many numerical methods
1–7] have been proposed and widely used to solve this
roblem. The finite difference (FD) method is one of the
ost popular methods for its simplicity and flexibility. As

nown, one major difficulty in the FD methods is how to
andle the interface conditions at the index discontinui-
ies without losing the whole solution accuracy [4,8]. It
as been verified in [8] that the commonly used average-

ndex approximation in the conventional FD schemes has
nly zero-order truncation error at the interface points in
he Cartesian coordinate. Recently, Lu et al. introduced a
econd order one-dimensional (1-D) full-vectorial FD
ode solver [4] for circular optical waveguides. Their FD

ormulations are described with two transverse compo-
ents Hr-H� on the radial axis in the cylindrical coordi-
ate system, where the angular variable is separated due
o the circular symmetry. In this method, the fields are
igorously matched at the radial discontinuities by the
se of Taylor expansion, and the resultant matrix still
eeps its compact form. Inside each homogeneous layer,
he vectorial wave equations are discretized by the cen-
ral FD scheme. Consequently, this FD method has sec-
nd order accuracy overall. However, such a precision is
till not high enough, especially in some large structures,
here a great number of nodes will be needed due to the

ow accuracy of FD methods. Therefore, higher order
ethods are still important to further improve the effi-

iency and accuracy.
In recent years, the pseudospectral method [9–13], also

alled the spectral collocation method (SCM), has at-
racted more and more attention in computational elec-
0740-3224/10/091722-9/$15.00 © 2
romagnetics (CEM) due to its high accuracy and fast con-
ergence over the conventional methods. There is an
xcellent book [14] introducing this method. As known,
he high order accuracy of spectral methods relies on the
moothness of solution functions [14]. Thus, a proper
reatment of the interface conditions is also crucial for the
pectral methods applied in CEM. In [15], Huang et al.
rst employed the multidomain pseudospectral method to
nalyze the modes of dielectric waveguides with step-
ndex profiles. Their two-dimensional (2-D) formulations
re introduced with two transverse components Hx-Hy in
he rectangular coordinate system. In their method, the
omain is divided into several subdomains with homoge-
eous refractive indices. The fields in each subdomain are
pproximated independently by the SCM and finally con-
ected rigorously by matching the interface conditions be-
ween the adjacent subdomains. This method has been
erified to own spectral accuracy. However, it can only be
sed in problems with horizontal and vertical interfaces.
hiang et al. then proposed another mulitidomain pseu-
ospectral frequency-domain (PSFD) scheme in [6] to de-
ermine the guided modes of general 2-D optical
aveguides with arbitrary interfaces. The formulations of

he PSFD method are described by H�-H� in the curvilin-
ar coordinate system. Furthermore, they also analyzed
he leaky modes in [7] by incorporating the perfectly
atched layer (PML) [16] with the PSFD. However, the
SFD method is not so efficient for circular optical
aveguides because it does not take use of the circular

ymmetry.
In this study, we show the details for the first time to

pply the multidomain Chebyshev pseudospectral
MCPS) method to solve the same 1-D full vectorial modal
quations as in [4] under the cylindrical coordinate sys-
em. In our method, the electromagnetic fields are ex-
010 Optical Society of America
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anded inside each homogeneous layer on the radial axis
y the Chebyshev basis functions, and then matched rig-
rously at the radial discontinuities by the interface con-
itions. The PML [4,17,18] in the cylindrical coordinate
ystem is also applied to accurately determine the guided
nd leaky modes. Furthermore, the generalized matrix ei-
envalue problem obtained by MCPS is finally trans-
ormed into a standard one, which can be solved easily by
ommon matrix eigenvalue solvers. The numerical analy-
is of the two layer air-clad fiber [6,19], hybrid surface
lasmon polaritons (SPPs) [20,21], and Bragg fibers
4,22–24] shows the validity and excellent performance of
ur method.

This paper is organized as follows. In Section 2, we for-
ulate the modal equations of circular optical fibers. The
CPS scheme is introduced in Section 3. Then it is vali-

ated in Section 4 by various numerical examples. Fi-
ally, we conclude this paper in Section 5.

. PROBLEM FORMULATION
quarter of the cross section of one step-index circular

ptical fiber is shown in Fig. 1, where the fiber is com-
osed of piecewise homogeneous layers with refractive in-
ex ni �i=1,2, . . . ,N�. The radial discontinuities are de-
oted as ri for i=1,2, . . . ,N−1. Notice that the outmost

nfinite cladding layer with nN is enclosed at rN by the
ML and rpml is the radius of the physical region. Thus,
he thickness of the PML is d=rN−rpml.

The 1-D modal equations, interface, and boundary con-
itions for the circular waveguide were proposed in [3,4].
e also briefly introduce them here. They are expressed

y the magnetic field vector H= �Hr H� Hz�T, and the
lectric formulations with E= �Er E� Ez�T can be ob-
ained by a small modification on the interface conditions.

Suppose that H is time-harmonic and propagates along
he longitudinal z-direction. Then it satisfies

H�r,�,z� = �
Hr�r�cos�m��

H��r�sin�m��

Hz�r,��
�exp�j��t − �z��, �1�

here m=0,1,2, . . . is the angular separation constant, t

1n 2n 3n … Nn Nn

2r1r 3r 1Nr − Nrpmlr

PML

r0 …
ig. 1. (Color online) A quarter of the cross section of a step-

ndex circular fiber.
s the time variable, � is the wave frequency, and � is the
nknown propagation constant.
As seen in [3,4], in the frequency domain, after reduc-

ng Hz from

� � �� � H� = �0
2�rH,

nd separating variables � and z, we get the full-vectorial
odal equations for circular waveguides only with the ra-

ial variable r,

� d2

dr2 +
1

r

d

dr
+ �0

2�r +
M

r2�	Hr

H�

 = �2	Hr

H�

 , �2�

here �0 is the wavenumber of free space, �r is the rela-
ive permittivity, and

M = − 	m2 + 1 2m

2m m2 + 1
 .

or simplicity, we denote the transverse magnetic field
Hr
H�

� as H and the transverse electric field � Er
E�

� as E here-
fter.
As known, H needs to satisfy the interface conditions

4] at the radial discontinuity ri, with i=1,2, . . . ,N−1.
amely,

H�ri
−� = H�ri

+�, �3�

dH�ri
−�

dr
=

��ri
−/�ri

+ − 1�

ri
	 0 0

m 1
H�ri
+� + 	1 0

0 �ri
−/�ri

+
dH�ri
+�

dr
,

�4�

here �ri
− and �ri

+ denote the permittivities of the inner
nd outer media at ri, respectively. These two equations
re derived from the continuities of the tangential fields
z and Ez.
Obviously, a singularity exists at r=0 in Eq. (2). This is

aused by the inherent property of the cylindrical coordi-
ate system. The fields are actually bounded and smooth
t this pole. So an additional boundary condition is set at
=0. Namely,

H = 0, m � 1, �5�

dH

dr
= 0, m = 1, �6�

t r=0 (see [4]).
At last, we add the PML to this model. This is done by

aking a complex coordinate transform [4,17,18] on the
adial variable r in Eq. (2). There are
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1

s2�r�

d2Hr

dr2 + � 1

s�r�

d

dr� 1

s�r�� +
1

r̂s�r��dHr

dr

+ ��2�r −
m2 + 1

r̂2 �Hr −
2m

r̂2
H� = �2Hr, �7�

1

s2�r�

d2H�

dr2 + � 1

s�r�

d

dr� 1

s�r�� +
1

r̂s�r��dH�

dr

+ ��2�r −
m2 + 1

r̂2 �H� −
2m

r̂2
Hr = �2H�, �8�

here

r̂ =�
0

r

s�t�dt, s�r� =
� r̂

�r
= �

1, r 	 rpml

1 − j

r

��0�r
, r � rpml,
 �9�

ith 
r=
r,max�r−rpml�P /dP and P is a positive number.
he maximum conductivity 
r,max can be determined by
he reflection coefficient R [25], i.e.,


r,max =
�P + 1��r

2�0d
ln

1

R
, �10�

here �0 is the wave impedance in free space.
As shown in [4,18,26], the PML in Eq. (9) cannot absorb

he evanescent waves. One way to overcome this difficulty
s to make 
r complex. But it will make the propagating
aves oscillate faster, which exacerbates the numerical

eflection [27]. Another way is to set the computational
omain large enough and the evanescent waves will de-
ay naturally. For simplicity, this paper chooses the sec-
nd approach.

The zero Dirichlet boundary condition,

H�rN� = 0, �11�

s set on the outer boundary of the PML. Thus, the total
odal equations denoted by H for the circular fiber are

omposed of Eqs. (3)–(8) and (11). And the solution do-
ain is the closed segment �r0 ,rN�, where r0=0.
The E modal equations have the same form as H except

he interface conditions (3) and (4) are replaced with

E�ri
−� = 	�ri

+/�ri
− 0

0 1
E�ri
+�, �12�

dE�ri
−�

dr
=

�1 − �ri
+/�ri

−�

ri
	 1 0

m 0
E�ri
+� +

dE�ri
+�

dr
; �13�

ee [4].

. THE MCPS METHOD FOR CIRCULAR
IBER
. Chebyshev Differentiation Matrix
e first introduce the definition of the Chebyshev differ-

ntiation matrix [14], which is important in the Cheby-
hev pseudospectral method. In [�1,1], the smooth func-
ion f�x� can be approximated by
f�x� � �
i=0

q

f�xi�gi�x�, �14�

here gi�x� is the Chebyshev–Lagrange interpolating
olynomial of degree q, satisfying

gi�x� =
�1 − x2�Tq��x��− 1�i+1

ciq
2�x − xi�

, �15�

ith c0=cq=2 and ci=1 for 1
 i
q−1. The polynomial
q�x� in Eq. (15) is defined by Tq�x�=cos�q cos−1�x��, where

x�
1. The node xi=cos�i� /q� is the so called Chebyshev–
auss–Lobatto point, which is also the root of �1
x2�Tq��x�.
The first order Chebyshev differentiation matrix D1

�di,j��q+1���q+1� on a general segment �a ,b� satisfies

�
f��t0�

f��t1�

]

f��tq�
� � D1�

f�t0�

f�t1�

]

f�tq�
� , �16�

here

tk = a +
b − a

2
�1 − xk�, k = 0,1, . . . ,q. �17�

hus, t0=a and tq=b. The matrix D1 in Eq. (16) can be
alculated by

�18�

ee [28]. Similarly, the second order Chebyshev differen-
iation matrix D2 satisfies

�
f��t0�

f��t1�

]

f��tq�
� � D2�

f�t0�

f�t1�

]

f�tq�
� ,

nd it can be easily calculated by D2=D1
2.

. Discretizations of the Modal Equations by the MCPS
ethod

n the MCPS method, the domain �r0 ,rN� is divided into
ubdomains ��ri−1,ri��i=1

N , where the index ni is constant in
ri−1,ri� for i=1,2, . . . ,N. Suppose the degree of the
hebyshev–Lagrange interpolating polynomial on the ith
egment �ri−1,ri� is qi, the corresponding first and second
rder Chebyshev differentiation matrices are D1

�i� and D2
�i�,

nd the discrete nodes are �tk
�i��k=0

qi with t0
�i�=ri−1 and tqi

�i�

r . Let H and H̄ be
i i i
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Hi = �Hr�t0
�i�� Hr�t1

�i�� ¯ Hr�tqi

�i�� H��t0
�i�� H��t1

�i�� ¯ H��tqi

�i���T, �19�

H̄i = �Hr�t1
�i�� Hr�t2

�i�� ¯ Hr�tqi−1
�i� � H��t1

�i�� H��t2
�i�� ¯ H��tqi−1

�i� ��T. �20�
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The discretizations are based on the Chebyshev differ-
ntiation matrix defined before. Firstly, the modal equa-
ions (7) and (8) at �tk

�i��k=1
qi−1 in �ri−1,ri� are discretized to

	Ai Bi

Bi Ai

Hi = �2H̄i, �21�

here

Ai = diag� 1

s2�tk
�i���D2

�i��2:qi, :� + diag� pk

s�tk
�i��

+
1

r̂ks�tk
�i���D1

�i�

��2:qi, :� + diag��0
2�r −

m2 + 1

r̂k
� ,

Bi = diag�2m

r̂k
� ,

ith pk= �d/dr��1/s�r�� �tk
�i� and r̂k= r̂ �tk

�i� for k=1,2, . . . ,
i−1. Here diag�wk� indicates the diagonal matrix with
wk� as the principal diagonal elements, and Dj

�i��2:qi , :� is
MATLAB notation denoting the matrix obtained from

liminating the first and last rows of Dj
�i� �j=1,2�.

Secondly, the interface conditions in Eqs. (3) and (4) are
iscretized at ri= tqi

�i�. The Dirichlet equation (3) is dis-
retized to

H�tqi

�i�� = H�t0
�i+1��, �22�

nd the two components of the Neumann equation (4) are
iscretized to

�
j=1

qi+1

D1
�i��qi + 1,j�Hr�tj−1

�i� � = �
j=1

qi+1+1

D1
�i+1��1,j�Hr�tj−1

�i+1��,

�23�

�
j=1

qi+1

D1
�i��qi + 1,j�H��tj−1

�i� � =
m��ri

−/�ri
+ − 1�

ri
Hr�t0

�i+1��

+
��ri

−/�ri
+ − 1�

ri
H��t0

�i+1��

+
�ri

−

�ri
+

�
j=1

qi+1+1

D1
�i+1��1,j�H��tj−1

�i+1��.

�24�

Finally, at r=r0= t0
�1�, we get

H�t0
�1�� = 0, m � 1, �25�
�
j=1

q1+1

D1
�1��1,j�H�tj−1

�1� � = 0, m = 1, �26�

nd at r=rN= tqN

�N� there is

H�tqN

�N�� = 0. �27�

hose discrete equations for E formulations are similar to
hose of H and are omitted here.

. The Reformulation of the Matrix Eigenvalue Problem
et HT= �H1

T H2
T

¯ HN
T �T, where Hi is the column vector

n Eq. (19) for i=1,2, . . . ,N. A generalized matrix eigen-
alue problem,

SHT = �2BHT, �28�

s obtained by assembling the discrete equations (21)–(27)
nder the sequence of HT, where S is a square block
parse coefficient matrix of unknowns and B is the modi-
ed identity matrix whose partial principal diagonal ele-
ents are replaced with zeros at those boundary and in-

erface nodes.
Huang pointed out in [29] that Eq. (28) can be solved

irectly by the implicitly restarted Arnoldi method, which
s efficient for sparse and large matrices. However, we
nd that it is more stable and accurate to reduce Eq. (28)
o a standard matrix eigenvalue problem.

For conciseness, we take S as a 4�4 matrix to show
he detailed procedure. Suppose

�
s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

��
H1

H2

H3

H4

� = �2�
1

1

0

1
��

H1

H2

H3

H4

� . �29�

If H4=0 is known in Eq. (29), e.g., the zero Dirichlet
ondition, we can eliminate its corresponding row and col-
mn, namely,

�
s11 s12 s13

s21 s22 s23

s31 s32 s33
��

H1

H2

H3
� = �2�

1

1

0
��

H1

H2

H3
� . �30�

urthermore, from the last row of Eq. (30), there is H3=
�s31/s33�H1− �s32/s33�H2. Substituting it into the first two
ows and doing some simplifications, we get

S̃2�2	H1

H2

 = �2	H1

H2

 . �31�

quation (31) is a standard matrix eigenvalue problem
ith the eigenvector �H1 H2�T.
The above elimination process is similar to those done

n [14,30], and it can be done locally since S is a block
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parse matrix. After finishing all the recursive elimina-
ions of interface and boundary nodes, we get a standard
atrix eigenvalue problem

S̃�
H̄1

H̄2

]

H̄N

� = �2�
H̄1

H̄2

]

H̄N

� , �32�

here S̃ is the reduction matrix of S and H̄i is the column
ector in Eq. (20). Equation (32) can be solved by the com-
only used matrix eigenvalue solver.

. NUMERICAL EXAMPLES AND
ISCUSSIONS
. Two Layer Air-Clad Optical Fiber

n this section, several numerical examples are studied to
how the validity and performance of our method, of
hich the solution accuracy and convergence are mainly

nvestigated and compared with other methods.
A two layer �N=2� air-clad optical fiber [6] is studied

rst. Its analytical effective index neff=� /�0 can be ob-
ained from the nonlinear dispersion relation by the New-
on root finding technique [19]. From Fig. 1, the param-
ters of this fiber are r1=0.6 �m with the core index n1
�8, and the air cladding index n2=1.0 with r2=6.5 �m.
he PML parameters are rpml=5.0 �m, P=4, R=10−8.
n fact, as seen in [6], there is no need to use PML here if
e are interested only in guiding modes. But the PML is
ecessary if we also want to compute the leaky modes. To
e unified, all the examples studied in this paper are cal-
ulated under PMLs.

In this example, the number qi of the discrete nodes in
he ith segment �ri−1,ri� is determined by

qi = �T ˙ � �i

�i=1
N �i

��, i = 1,2, �33�

here T is a given integer, � � denotes the floor, and �i

��ri−ri−1� /rN��ni�. Suppose that the order of S̃ in Eq. (32)
s U, which indicates the number of unknowns.

First, we verify the validity of the MCPS method. The
ffective index neff of the fundamental mode HE11 of this
ber is shown in Fig. 2 with different wavelengths �. It
an be seen the numerical results (dotted line) obtained
y the MCPS method agree well with the exact ones (solid
ine).

Table 1. The Numerical neff of HE11 Mod

T U neff�E�
10 14 2.710 234 122 200 3
20 34 2.684 394 856 970 7
30 54 2.684 023 848 731 3
40 74 2.684 019 330 566 3
50 94 2.684 019 321
60 114 2.684 019 321
Then we study its solution accuracy. Suppose the wave-
ength �=1.5 �m. The exact effective index of the HE11

ode is neff,exact=2.684 019 321 601 08 [6]. In Table 1, we
how the numerical neff obtained by both the electric and
agnetic formulations. It can be seen the numerical neff

chieves up to 12 digits when U=114 and the solution re-
ults of the two formulations are almost the same. By
omparison, similar precision (11 digits) of neff was
chieved in PSFD [6] with 4840 unknowns. Correspond-
ngly, the computing time of MCPS at U=114 is only
.1825 s on a personal computer with an Intel Pentium 4
.0 GHz central processing unit (CPU), while that of the
SFD [6] takes more than 52 s with an Intel Dual Core
300 1.8 GHz CPU. Obviously, the 1-D MCPS method is
ore efficient compared to the 2-D PSFD method in [6]

or the circular waveguide.
Finally, we consider the convergence of the MCPS
ethod. The relative error is defined by

Relative error =
�neff − neff,exact�

�neff,exact�
, �34�

here neff is the numerical effective index. In Fig. 3, the
onvergence curves of the MCPS method are shown to
ompare with that of the FD method in [4]. It can be seen
hat our MCPS method converges much faster and the
erformances of its H and E formulations are identical.
ctually, the FD method in [4] has O�h2� convergence

ate, where h= �rN−r0� /K is the step size with K as the
umber of discrete nodes. But the spectral methods usu-
lly have the typical convergence rate O�cK� �0	c	1� to
pproximate the analytical functions [14]. Thus, to reach
he same precision, the number of nodes needed in MCPS
s much less than the FD in [4]. On the other hand, if the

=1… by MCPS for Air-Clad Optical Fiber

neff�H�
�10−7i 2.710 234 122 200 30−7.85�10−7i
�10−8i 2.684 394 856 970 74+3.11�10−8i
�10−10i 2.684 023 848 731 34+6.33�10−10i
�10−12i 2.684 019 330 566 40+1.75�10−12i
7 2.684 019 321 620 47
9 2.684 019 321 608 18

1 1.2 1.4 1.6 1.8 2
2.55

2.6

2.65

2.7

2.75

2.8

λ (µm)

n ef
f

MCPS
Exact

ig. 2. (Color online) The effective index of the HE11 mode for
he two layer optical fiber with different �’s.
e „m

0−7.85
4+3.11
4+6.33
8+1.75

620 4
608 1
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ame number of nodes are used, a much higher order of
ccuracy can be obtained by MCPS.

. The Optical Fiber Hybrid Surface Plasmon Polariton
e study the optical fiber hybrid SPP [4,20] here to verify

he effectiveness of the MCPS method for circular
aveguides in lossy materials. A typical hybrid SPP is

omposed of three different layers �N=3� of materials. As
een in Fig. 1, the core index n1=1.515 and the core ra-
ius r1 satisfy �0r1=5.0. The second layer is silver with
he relative permittivity �r=−19+0.53i �n2=�r

1/2� at the
avelength of �=0.6328 �m, and r2 satisfies �0�r2−r1�
0.6. The index of the cladding layer is n3=1.500 and r3
rpml+d �m. The PML parameters are same as the two

ayer fiber studied before except rpml=6.0 �m.
Since the thin metal layer of the hybrid SPP has sig-

ificant influence on the effective index, the node distri-
ution in this layer must be denser than the other two
ayers. In this example, the node number qi of the ith seg-

ent �ri−1,ri� is determined by

qi = �T�i�, i = 1,2,3, �35�

here T is a given integer, � � denotes the ceil, and �
�0.147 0.118 0.735�.
When m=4, the analytical neff of the antisymmetric
ode is 1.506 444+3.663�10−3i [20]. It was also solved

s 1.506 444+3.662 701�10−3i by the FD method in [4].
n Table 2, we compute it by MCPS with different T’s un-
er the PML parameters d=1.0 �m and R=10−8. It can be
een neff of MCPS at T=60 has similar accuracy as that of
he FD method. Since the MCPS solutions converge, neff
t T=120 is certainly more accurate than T=60. To make
ure of its reachable digits, a high-precision reference so-

Table 2. The Numerical neff of Antisymm

T U neff�E�

20 36 1.504 873 354 739 528+4.079 641 634
40 76 1.506 299 567 238 919+3.665 911 796
60 118 1.506 443 523 479 754+3.662 701 351
80 156 1.506 443 740 128 931+3.662 698 102
00 196 1.506 443 741 314 853+3.662 698 058
20 238 1.506 443 741 319 942+3.662 698 058
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ig. 3. (Color online) The convergence curves of the HE11 mode
y MCPS compared with the FD in [4] for the air-clad optical
ber.
ution is needed. We compute it through the MCPS
ethod with enough nodes. In fact, T=200 and T=300
nder the following PML parameters:

• R=10−8 and d=0.2j �m, j=1,2, . . . ,10;
• R=10−12 and d=0.2j �m, j=1,2, . . . ,10;
• d=1.0 �m and R=10−2j , j=2,3, . . . ,7,

re considered. In this way, we obtain the credible neff of
he antisymmetric mode �m=4� as 1.506 443 741 3
3.662 698 058�10−3i. Thus, the results of the antisym-
etric mode �m=4� in Table 2 are believed to have eleven

xact digits in real part and ten accurate digits in imagi-
ary part.
Finally, we consider the convergence rate of the MCPS
ethod for this example. Let the MCPS result with T
200 �U=396� be the reference solution. The PML param-
ters are fixed as d=1 �m and R=10−8. This is because
ther PML parameters lead to similar convergence re-
ults. In Fig. 4, we observe the spectral convergence be-
avior, where the smallest relative error achieves
�10−12� at U=238. The convergence rates of the two for-
ulations are almost identical.

. The Bragg Fibers
he Bragg fibers [4,22–24] attract more and more atten-

ion due to their special properties of guiding light. They
re studied here to show the performance of the MCPS
ethod in the super-multi-interface structures. As

nown, a typical hollow core Bragg fiber is composed of an
ir-core, several periodic pairs of alternating materials,
nd an outmost infinite cladding layer.
The parameters of two Bragg fibers [4,24] are intro-

uced in Table 3, where n1 is the air-core index; n2 and n3
re, respectively, the high and low indices of the first pe-

Mode „m=4… by MCPS for Hybrid SPP

neff�H�

10−3i 1.504 843 652 588 878+4.076 213 008 938�10−3i
10−3i 1.506 297 785 778 939+3.665 763 504 535�10−3i
10−3i 1.506 443 527 907 785+3.662 701 557 772�10−3i
10−3i 1.506 443 740 170 344+3.662 698 103 466�10−3i
10−3i 1.506 443 741 314 997+3.662 698 058 130�10−3i
10−3i 1.506 443 741 319 974+3.662 698 058 102�10−3i

0 50 100 150 200 250
10

−15

10
−10

10
−5

10
0

Number of Unknows (U)

R
el

at
iv

e
E

rr
or

H−field
E−field

ig. 4. (Color online) The convergence curves of the antisym-
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iodic pair of materials in the second and third layers; nN
s the index of the outmost infinite cladding layer; r1 is
he core radius; �1 �=r2−r1� and �2 �=r3−r2� are, respec-
ively, the thicknesses of the second and third layers; Npair
s the number of periodic pairs; and N �=2Npair+2� is total
umber of layers (see Fig. 1). The outmost infinite clad-
ing layers of the two fibers are truncated by PMLs with
pml=r1+Npair��1+�2�+5 �m and rN=rpml+d �m.

In the two examples, the node number qi of the ith seg-
ent �ri−1,ri� is determined by the following rule:

qi = �T� �i

�
i=1

N

�i��, i = 1,2, . . . ,N, �36�

here T is a given integer, � � denotes the ceil, and �i
��ri−ri−1� /rN��ni�.

Table 3. Paramete

D n1 n2 n3 nN

a) 1.0 1.49 1.17 1.49
b) 1.0 1.45 1.10 1.45

Table 4. The Numerical neff of TE01 M

T U neff�E�

00 346 0.891 692 470 534 612−1.224
00 568 0.891 062 513 765 067−1.426
00 758 0.891 066 997 011 825−1.422
00 980 0.891 067 218 043 187−1.422
00 1170 0.891 067 217 430 514−1.422
00 1360 0.891 067 217 466 421−1.422

Table 5. The neff of Higher Order Modes of B

TM01 �m=0�

CPS �T=700� 0.792 085 903 112 979−1.819 323
mproved FD [4] 0.792 095−1.8191�10
D frequency domain [2] N/A
hew’s method [31] 0.792 086−1.8190�10
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ig. 5. (Color online) The convergence curves of the modes by
CPS for Bragg fiber (a).
Different from the two layer fiber studied before, the
undamental mode of the Bragg fiber is the TE01 mode
nd it has the lowest loss compared to other higher order
odes. Suppose the wavelength �=1.0 �m. For Bragg fi-

er (a), neff of its fundamental mode was solved as
.891 068−1.4227�10−8i in [4] by the FD method. An-
ther earlier result was 0.891 067−1.4226�10−8i by
hew’s method [31]. In Table 4, we show our MCPS re-
ults under the PML parameters d=1.0 �m and R=10−8.
t can be seen that the MCPS solutions are closer to those
f Chew’s method [31]. In order to make sure of the reach-
ble digits, we use the same method as the hybrid SPP
ut with T=1200 to compute the reference solutions for
he modes of Bragg fiber (a). In this way, we obtain the
redible neff of the TE01 mode as 0.891 067 217 4
1.422 60�10−8i. Thus, the MCPS results in Table 4 with
=700 are believed to have ten accurate digits in real
art and six exact digits in imaginary part. To achieve

two Bragg Fibers

� �1 ��m� �2 ��m� Npair N

8 0.2133 0.3460 16 34
0.5 0.5 50 102

„m=0… by MCPS for Bragg Fiber (a)

neff�H�

�10−8i 0.891 692 470 534 627−1.224 473 9�10−8i
�10−8i 0.891 062 513 765 046−1.426 342 7�10−8i
�10−8i 0.891 066 997 011 910−1.422 152 1�10−8i
�10−8i 0.891 067 218 043 118−1.422 607 2�10−8i
�10−8i 0.891 067 217 430 386−1.422 605 5�10−8i
�10−8i 0.891 067 217 466 790−1.422 604 7�10−8i

Fiber (a) Calculated by Different Methods

Hybrid �m=1�

9�10−3i 0.805 577 881 426 740−1.739 146 908 714�10−3i
0.805 582−1.7389�10−3i
0.805 583−1.7375�10−3i
0.805 578−1.7392�10−3i
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imilar precision as the FD result, only eight nodes in the
hinner �1 layer are needed in MCPS �T=500�, while it is
00 for that of the FD in [4]. So it indicates again that the
CPS converges much faster than the FD method.
Other higher order modes such as the TM01 �m=0� and

he hybrid �m=1� modes are also calculated by MCPS for
ragg fiber (a). To be concise, only neff at T=700 with the
ML parameters d=1.0 �m and R=10−8 is shown and
ompared with the known results in Table 5. Good agree-
ent is observed on these data. The reference solutions of

hese two modes are also computed in the same way as
he TE01 mode. The credible effective index of TM01 mode
s 0.792 085 903−1.819 322�10−3i. It can be seen that
he MCPS result with T=700 has nine exact digits in real
art and six exact digits in imaginary part. Similarly, the
redible neff of the hybrid mode �m=1� is 0.805 577 881
1.739 146�10−3i. Thus, the result of the hybrid mode in
able 5 has nine exact digits in real part and seven accu-
ate digits in imaginary part.

Then we study the convergence rates of MCPS to solve
hese three modes. The reference solutions are all ob-
ained by MCPS at T=1200 �U=2374�. The PML param-
ters are fixed as d=1 �m and R=10−8. The convergence
urves are shown in Fig. 5, where the spectral conver-
ence is observed. Particularly, the convergence rate of
he TE01 mode is a little faster that the other two modes.
t indicates that more nodes are needed in the higher or-
er modes than the fundamental mode if the same order
f precision is desired.

The Bragg fiber (b) [24] has more periodic pairs than
he Bragg fiber (a). Suppose the wavelength �=2.0 �m.
he analytical propagation constant of the TE01 mode of
ragg fiber (b) is �exact=2.512 653 735 168 542 [24]. Sup-
ose that the PML parameters are fixed as d=1 �m and
=10−8. In Table 6, we show the numerical results of � by

he MCPS method. The imaginary parts of � are on the
rder of 10−14, which indicates that the TE01 mode is a
uasi-guided mode with a very low loss. When T=1000,
ine accurate digits after the decimal point are obtained,
hile only eight nodes are used in the �2 layer. The con-
ergence curve of the TE01 mode for Bragg fiber (b) is
hown in Fig. 6, where the quasi-spectral convergence is
bserved.

. CONCLUSION
e have proposed a new 1-D full-vectorial mode solver

ased on the multidomain Chebyshev pseudospectral
MCPS) method for the circular waveguides. Numerical
tudies have verified its validity and performance. We see

Table 6. The Propagation Constant � of the

T U ��E

500 842 2.512 645 016 906 3
600 1072 2.512 648 540 225 4
700 1298 2.512 653 950 400 6
800 1428 2.512 653 535 595 1
900 1658 2.512 653 737 717 4

1000 1884 2.512 653 735 463 2
hat the MCPS solutions have quasi-spectral convergence
ate and they agree well with the known results. Particu-
arly, compared to the FD method in [4], a much higher
rder of solution accuracy is achieved in the MCPS
ethod with even less nodes. And the MCPS method is

lso more efficient than the PSFD method in [6] due to its
ower dimension advantage. In addition, the indiscernible
ifference on the performance of the electric and magnetic
CPS formulations shows its self-consistency. Although

he MCPS method is described only for step-index circu-
ar optical waveguides in this paper, we also indicate that
t can be easily extended to the graded index ones if we
eplace the constant �0

2�r with �0
2�r�tk

�i�� in the discrete
quations.
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