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A B S T R A C T

In recent years, deep learning (DL) techniques, and in particular convolutional neural networks (CNNs), have
shown great potential in electroencephalograph (EEG)-based emotion recognition. However, existing CNN-
based EEG emotion recognition methods usually require a relatively complex stage of feature pre-extraction.
More importantly, the CNNs cannot well characterize the intrinsic relationship among the different channels
of EEG signals, which is essentially a crucial clue for the recognition of emotion. In this paper, we propose
an effective multi-level features guided capsule network (MLF-CapsNet) for multi-channel EEG-based emotion
recognition to overcome these issues. The MLF-CapsNet is an end-to-end framework, which can simultaneously
extract features from the raw EEG signals and determine the emotional states. Compared with original CapsNet,
it incorporates multi-level feature maps learned by different layers in forming the primary capsules so that
the capability of feature representation can be enhanced. In addition, it uses a bottleneck layer to reduce the
amount of parameters and accelerate the speed of calculation. Our method achieves the average accuracy of
97.97%, 98.31% and 98.32% on valence, arousal and dominance of DEAP dataset, respectively, and 94.59%,
95.26% and 95.13% on valence, arousal and dominance of DREAMER dataset, respectively. These results show
that our method exhibits higher accuracy than the state-of-the-art methods.

1. Introduction

Emotion is a psychological state that affects people’s cognition,
decision-making and behavior [1]. At present, affective computing
plays a crucial role in artificial intelligence, particularly in the field of
human–computer interaction. An artificial machine with the ability to
analyze human emotion can better understand human beings so as to
better meet human needs.

In general, human emotion identification are based on either non-
physiological signals, such as facial expressions [2], body gestures [3],
speech [4], or physiological signals, such as electrocardiogram (ECG)
[5], electroencephalograph (EEG) [6], and electromyogram (EMG) [7].
Compared with non-physiological signals, physiological signals spon-
taneously produced by human body are not susceptible to the impact
of subjective will, providing a reliable way for emotion recognition.
From the view of neuroscience [8], there are some major brain cortex
regions closely related with emotion, such as the orbital frontal cortex,
ventral medial prefrontal cortex and amygdala [9]. Thus, among the
various types of physiological signals, EEG signal has the advantage
of reflecting the emotional states of human beings. Furthermore, with
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the rapid development of the techniques for collecting EEG signal, it is
becoming more and more convenient to collect EEG signal. Therefore,
EEG signal has been widely used for emotion recognition and achieved
satisfactory results.

The process of EEG-based emotion recognition can be divided into
two main stages. The first stage is extracting feature from EEG signals to
effectively represent emotional state. EEG features can be extracted ei-
ther from time domain or frequency domain. The time domain features
mainly capture the temporal information of EEG signals, such as Hjorth
feature [11], fractal dimension feature [12] and higher order crossing
feature [13]. The frequency domain features aim to capture the EEG
emotion information from the frequency domain, such as the power
spectral density (PSD) feature, differential entropy (DE) feature [14],
the rational asymmetry (RASM) feature [15] and the differential cau-
dality (DCAU) feature [16], etc. The second stage is designing classifiers
to predict the emotional labels according to those extracted features.
Various machine learning algorithms have been used as classifiers for
EEG-based emotion recognition with satisfactory accuracy, such as
support vector machine (SVM) [16], k-nearest neighbors (k-NN) [17],
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Fig. 1. Emotion distribution in Valence-Arousal-Dominance space [10].

linear discriminant analysis (LDA) [18], random forest, Naive Bayes
(NB), etc.

In recent years, owing to the powerful ability of feature extrac-
tion, deep learning (DL) algorithms have achieved state-of-the-art per-
formance in the fields of computer vision [19,20], natural language
processing [21,22], speech recognition [23], as well as EEG-based
emotion recognition [24–27]. Models that have been applied to EEG-
based emotion recognition include deep brief networks (DBNs) [24],
convolutional neural networks (CNNs) [25,26], graph convolutional
neural networks (GCNN) [27], capsule network (CapsNet) [28], etc.
Alhagry et al. proposed a 4-layer deep learning framework based on
long-short term memory (LSTM) to learn features from raw 32-channel
EEG signals, and then adopted the dense layer to classify these features
into low/high arousal or low/high valence. This method achieved
average accuracy of 85.65% and 85.45% for arousal and valence on
DEAP dataset, respectively [29]. Tripathi et al. incorporated contempo-
rary techniques (e.g., dropout and rectilinear units) into a 2D CNN to
effectively classify preprocessed 2D EEG data. They got classification
accuracy of 81.41% and 73.35% for valence and arousal on DEAP
dataset, respectively [26]. Chao et al. combined PSD features with
spatial characteristics of original EEG signals to construct multiband
feature matrix (MFM), and then utilized CapsNet as a classifier to
determine the EEG emotional states from the MFM. They achieved
average accuracy of 68.28% and 66.73% for arousal and valence on
DEAP dataset, respectively [28].

Despite the great progress that has been achieved, there still exist
some challenges in the study of DL-based EEG emotion recognition.
First, many existing DL-based EEG emotion recognition methods have
a feature pre-extraction stage for the raw EEG signals before network
computing, such as the works mentioned above [24,27,28]. However,
some feature extraction approaches require manual operation, and this
stage is actually not in good accord with the data-driven principle of
deep learning. Second, CNN has currently been one of the most pop-
ular DL models for EEG-based emotion recognition, while it typically
needs a large-scale annotated dataset to achieve high performance.
Unfortunately, unlike the problems in the field of computer vision
(e.g., natural image classification), it is very difficult to collect and
annotate ‘‘sufficient’’ EEG signals for emotion recognition, especially for
the subject-dependent case where the training and test data are both
from the same subject. Besides, it is demonstrated that CNN cannot
characterize the spatial relationship among different features well [30].
In multi-channel EEG-based emotion recognition, the intrinsic rela-
tionship among different channels is a crucial clue for identifying the
emotional states [27,31]. There is a strong correlation between emo-
tional states and brain functional connectivity patterns. Specifically,

different emotional states cause different activities in various functional
areas of the brain, and specific connections among different functional
regions [32,33]. However, the intrinsic relationship among different
channels may be neglected by the CNN models.

To address the above challenges, we propose an end-to-end deep
learning framework for multi-channel EEG-based emotion recogni-
tion based on the capsule network incorporating multi-level features,
namely, MLF-CapsNet, which is fully data-driven without any feature
pre-extraction stage. The MLF-CapsNet can be well trained with a much
smaller scale of training data in comparison to CNNs, so it is very
suitable for the EEG-based emotion recognition problem, especially
for the subject-dependent task. Unlike convolutional neural networks,
the MLF-CapsNet has strong ability to identify the positional relation-
ship among local features in the spatial domain, which is beneficial
to improving the classification accuracy of emotion. Moreover, the
original CapsNet has limitation on some classification tasks, where the
target objects have complex internal representations [30]. Thus, we
incorporate multi-level feature maps learned by different convolution
layers in forming the primary capsules, which is more efficient for fea-
ture representation in multi-channel EEG-based emotion recognition. In
addition, in order to reduce the amount of parameters and accelerate
the speed of calculation, we use a bottleneck layer to reduce the
number of channel of concatenated feature maps. Experimental results
on the popular DEAP [34] and DREAMER [35] datasets show that the
proposed method can significantly outperform some state-of-the-art DL-
based methods on subject-dependent EEG-based emotion recognition
task. The main contributions of this paper can be summarized as
follows:

1. We propose a DL framework i.e., MLF-CapsNet for multi-channel
EEG emotion recognition. The proposed MLF-CapsNet is an end-
to-end framework, which can extract features from the raw
EEG signals and determine the emotional states simultaneously.
More importantly, it can effectively characterize the intrinsic
relationship among various EEG channels due to its innovative
structure.

2. In comparison to the original CapsNet, the MLF-CapsNet can
combine multi-level features extracted from different convolu-
tion layers to form primary capsules, which can enhance the
capacity of representation of capsule network. In addition, we
add a bottleneck layer to reduce the amount of parameters and
accelerate the speed of calculation.

3. We conduct experiments on two public datasets, i.e., DEAP and
DREAMER, for subject-dependent EEG-based emotion recogni-
tion. The proposed method achieves state-of-the-art performance
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Fig. 2. Schematic diagram of preprocessing.

on both datasets. For DEAP, it achieves the mean accuracy of
97.97%, 98.31% and 98.32% for valence, arousal and domi-
nance respectively. For DREAMER, it achieves the mean ac-
curacy of 94.59%, 95.26% and 95.13% for valence, arousal
and dominance, respectively. The performance on both two
datasets shows significant improvement when compared with
the performance of some recently proposed DL-based methods.

This paper is organized as follows. In Section 2, related works are
described. Section 3 presents the proposed MLF-CapsNet-based emotion
recognition method. Section 4 illustrates experiments conducted on
DEAP and DREAMER datasets. Section 5 gives the discussion of the
experimental results. Finally, we conclude this paper in Section 6.

2. Related works

In this section, we first introduce dimensional model to describe
emotion, namely, valence-arousal-dominance model. Then, we intro-
duce the theory and several applications of the CapsNet.

2.1. Emotion model

Emotion is traditionally classified by two basic models, i.e., the
discrete model and dimensional model [36]. Discrete theories of emo-
tion propose that the existence of separate emotions are characterized
by coordinated response patterns in physiology, neural anatomy, and
morphological expressions. Happiness, sadness, anger, disgust, fear,
and surprise are six basic emotions that are specified by discrete
model to describe emotion [37,38]. However, dimensional theories
believe that emotion is not discrete but continuous, and can be de-
scribed by multiple consecutive values. The most famous dimensional
theory is the three-dimensional space, namely valence, arousal and
dominance [10]. The valence refers to the degree of human pleasure
from positive to negative, the arousal characterizes the level of ex-
citement from passive to active, and the dominance ranges from a
helpless and weak feeling (without control) to an empowered feeling
(in control of everything). Valence-arousal-dominance model has been
widely used in EEG-based emotion recognition due to its simplicity
and ability to describe emotion well [10]. Fig. 1 shows emotion dis-
tribution in valence-arousal-dominance space. This model adopts a
three-dimensional coordinate system to express emotion, in which the
emotional states are determined by the continuous values of arousal,
valence and dominance. For example, the values of ‘‘Happy’’ in three
dimensions are 7.1429, 4.8571 and 5.2143, respectively.

2.2. Capsule network

Neural networks based on CNN have achieved superior performance
in computer vision tasks such as classification, object detection, and
semantic segmentation. However, CNN still has a shortcoming caused
by pooling operation. Pooling is a downsampling of the feature maps
learned by convolution kernels, which can reduce the computational
complexity, and deal with the changes in images caused by changes in
viewpoint. Unfortunately, the benefits of pooling are at the expense of
discarding precise spatial relationships between high-level parts, which
is crucial for some recognition tasks. For example, face recognition
requires precise spatial relationships between the five facial organs
to identify human face correctly [39]. To overcome the shortcomings
of CNN, a network called the capsule network (CapsNet) has been
proposed [30]. The CapsNet can represent the relative spatial relation-
ship between local parts and the whole object. The core units that
make up the CapsNet are called capsules. Capsules are locally invariant
groups of neurons, which learn to recognize the presence of visual
entities and encode their properties into vector. The length of vector
(between zero and one) represents the presence of the entity, and
the orientation represents the instantiation parameters. Innovatively,
the capsules of different layers are connected through an iterative
routing-by-agreement mechanism: a lower-level capsule prefers to send
its output to higher-level capsules whose activity vectors have a big
scalar product with the prediction coming from the lower-level cap-
sules. Furthermore, in the CapsNet, transformation matrices are used
to encode the intrinsic spatial relationship between a part and a whole
of an object so that the CapsNet can overcome the shortcomings of
CNN caused by pooling. Due to these innovative ideas, the CapsNet is
more robust to translation and rotation, and is considerably better at
recognizing highly overlapping digits.

Considering the above mentioned advantages, the CapsNet has been
applied to many fields in the past two years, such as natural language
processing [40], medical image classification [41], hyperspectral im-
age classification [42] and speech recognition [43], and has achieved
superior performance. Wang et al. proposed the aspect-level sentiment
model based on the CapsNet, which is capable of performing aspect
detection and sentiment classification simultaneously [40]. Afshar et al.
exploited the CapsNet to determine the correct type of brain tumor cap-
tured by Magnetic Resonance Imaging (MRI) [41]. Yin et al. proposed
a new CapsNet-based architecture with three convolutional layers to
adjust the CapsNet to hyperspectral image classification, achieving
significantly superior performance in hyperspectral image classifica-
tion [42]. Turan et al. extracted spectrogram representations from the
short segments of an audio signals, and then used the CapsNet to
recognize an infant’s cry [43].
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Fig. 3. The proposed MLF-CapsNet-based EEG emotion recognition framework.

3. The proposed method

In this section, we firstly introduce the preprocessing of raw EEG
data, and then present the details of the proposed MLF-CapsNet-based
emotion recognition method.

3.1. Preprocessing

Fig. 2 shows the process of preprocessing. For the sake of fair
comparison with some recently proposed DL-based methods which
provide source code for reproducible research, we conduct exactly the
same data preprocessing approach as these previous works [25,44].
Each recording EEG signal contains a baseline signal recorded in relax
state and an experimental signal recorded under stimulation. Let 𝐗 ∈
R𝐶×𝑁1 denote a baseline signal and 𝐘 ∈ R𝐶×𝑁2 denote corresponding
experimental signal. 𝐶 is the number of electrode nodes. 𝑁1 and 𝑁2
denote the number of sampling points of 𝐗 and 𝐘, respectively. First,
we cut the baseline signal into 𝑀1 segments with the same length 𝐿,
each of which is recorded as 𝑋𝑖 (𝑖 = 1, 2,… ,𝑀1) ∈ R𝐶×𝐿. Second, we
do the element-wise addition for all of these segments, and calculate
the mean value to get 𝐗, which is used to represent subjects’ basic
emotional state without any stimulation. This step can be formulated
as:

𝐗 =
∑𝑀1

𝑖=1 𝑋𝑖

𝑀1
. (1)

Besides, the same segmentation is also used to cut experimental signal
𝐘. Therefore, we can get 𝑀2 matrices, each of which is denoted as 𝑌𝑗
(𝑗 = 1, 2,… ,𝑀2) ∈ R𝐶×𝐿. Then, we subtract 𝐗 from 𝑌𝑗 to obtain 𝑌 ′

𝑗 .
This step can be formulated as:

𝑌 ′
𝑗 = 𝑌𝑗 − 𝐗. (2)

After the above steps, we concatenate all of these 𝑌 ′
𝑗 into a matrix

recorded as 𝐘′, of which the size is the same as that of raw experimental
EEG signals 𝐘.

Usually, DL-based emotion recognition methods require a large
number of labeled EEG data to train the model. Therefore, most DL-
based works divide the experimental signals into segments to increase
the number of EEG samples. Specifically, according to the analysis

results reported in [45], one second is the most suitable window length
for emotion recognition. As a result, in this paper, we adopt one
second slide window to cut the baseline signals 𝐗 and the experimental
signals 𝐘. Then, we also use one second slide window to segment the
preprocessed signals 𝐘′. Each segment derived from 𝐘′ is regarded as a
sample, which inherits the labels of the original experimental signals.

3.2. MLf-CapsNet-based emotion recognition

The proposed EEG emotion recognition framework based on MLF-
CapsNet has three modules, namely, ConvReLU, multi-level features
guided PrimaryCaps (MLF-PrimaryCaps) and EmotionCaps. The details
are illustrated in Fig. 3.

ConvReLU is a convolutional layer, which has 256 convolutional
kernels with a stride of 2 and ReLU activation. The size of these con-
volutional kernels is determined by the shape of input. The difference
in the number of channels between the two datasets results in different
size of convolutional kernels, and we adopt 9 × 9 for DEAP and 6 × 6
for DREAMER. This layer converts the value of sample points to the
activities of local feature detectors, which are then used as inputs to
the MLF-PrimaryCaps.

The MLF-PrimaryCaps is a convolutional capsule layer with 32
channels of convolutional 8D capsules (in other words each primary
capsule contains 8 convolutional units with a 9 × 9 or 6 × 6 filter and
a stride of 1). In total, the MLF-PrimaryCaps has 𝑘1 (𝑘1 = 32 × ℎ × 𝑤)
capsule outputs (each output is an 8D vector). The length and direction
of each primary capsule represent the presence and property of the low-
level features related to emotional states, respectively. In this module,
we incorporate multi-level feature maps learned by different layers in
forming the primary capsules so that primary capsules can contain
more information. In addition, we add a bottleneck layer to reduce the
amount of parameters and accelerate the speed of calculation. In the
following, we provide the details of this module. First, convolution is
employed to extract deeper features from the output of upper layer.
The size of convolutional kernel is the same as that of ConvReLU
layer. However, different from ConvReLU layer, we use stride of 1 and
padding to ensure that the produced feature maps have the same size
as that of the output of upper layer. Second, we concatenate the two-
level features so that we can get 512 feature maps. Third, there is the
bottleneck layer. We use 256 convolutional kernels of size 1 × 1 to
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Fig. 4. Routing-by-agreement mechanism.

Table 1
The number of trainable parameters of two methods.

Methods MLF-CapsNet (w/o)* MLF-CapsNet

Params (M) DEAP 200.35 110.85
DREAMER 78.24 44.15

MLF-CapsNet (w/o)* means the MLF-CapsNet without bottleneck layer.

reduce the number of channel of concatenated feature maps from 512
to 256. Last, we group 256 feature maps into 8D capsules. After the
above steps, we make the primary capsules contain more information,
and enhance the representation capacity of capsules.

The final module is EmotionCaps. Because we use this framework to
preform binary classification task, namely low/high valence, low/high
arousal, low/high dominance, the EmotionCaps has 𝑘2 (𝑘2 = 2) 16D
emotional capsules that correspond to two types of emotional states.
The length of the vector of each capsule in EmotionCaps layer indicates
presence of an emotional class, and is used to calculate the classifi-
cation loss. In this sense, a special mechanism has been implemented
between MLF-PrimaryCaps and EmotionCaps, known as routing-by-
agreement mechanism [30], which connects the current EmotionCaps
layer with the previous MLF-PrimaryCaps layer. Its goal is to design
better learning process in comparison with traditional pooling methods.
This process not only captures part-whole spatial relationship by trans-
formation matrices, but also routes the information between capsules
by reinforcing connections of those capsules, which are allocated at
different layers and obtain a high grade of agreement. In the following,
we provide the details of this process and show it in Fig. 4.

First, we multiply the output 𝐮𝑖 (𝑖 = 1, 2,… , 𝑘1) of the 𝑖th primary
capsule by a weight matrix 𝐖𝑖𝑗 (𝑗 = 1, 2,… , 𝑘2) to get ‘‘prediction vec-
tor’’ (or high-level emotional feature) �̂�𝑗|𝑖. This step can be formulated
as:

�̂�𝑗|𝑖 = 𝐖𝑖𝑗𝐮𝑖, (3)

where 𝐖𝑖𝑗 is a transformation matrix between 𝐮𝑖 and �̂�𝑗|𝑖. It is used
to describe the relative spatial relationship between the low-level emo-
tional features and high-level emotional features.

Second, we sum all �̂�𝑗|𝑖 with different weights to obtain 𝐬𝑗 . This step
can be formulated as:

𝐬𝑗 =
∑

𝑖
𝑐𝑖𝑗 �̂�𝑗|𝑖, (4)

where 𝑐𝑖𝑗 is coupling coefficient between 𝑖th primary capsule and
𝑗th emotional capsule. The coupling coefficients between 𝑖th primary

Table 2
Structural parameters of proposed model.

Modules/Loss Layers/Routing Parameters Shape/Value

Input Input – DEAP: 32 × 128
DREAMER: 14 × 128

ConvReLU Conv2D Kernel DEAP: 9 × 9 × 256
DREAMER: 6 × 6 × 256

MLF-PrimaryCaps

Conv2D Kernel DEAP: 9 × 9 × 256
DREAMER: 6 × 6 × 256

Concatenate – –

Bottleneck (Conv2D) Kernel 1 × 1 × 256

Reshape – –

EmotionCaps Dynamic routing 𝐖𝑖𝑗 8 × 16
𝑐𝑖𝑗 –

Loss – 𝑚+ 0.9
𝑚− 0.1

capsule and all emotional capsules sum to 1. 𝑐𝑖𝑗 is determined by a
‘‘routing softmax’’ as follows:

𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗 )

∑

𝑘 exp(𝑏𝑖𝑘)
, (5)

where initial logit 𝑏𝑖𝑗 is the log prior probability that 𝑖th primary
capsule should be coupled to 𝑗th emotional capsule.

Third, in order to ensure that the length of the output 𝐯𝑗 of 𝑗th
emotional capsule is between 0 and 1, a non-linear function called
‘‘squashing’’ is applied to squash 𝐬𝑗 . This step can be formulated as:

𝐯𝑗 =
‖𝐬𝑗‖2

1 + ‖𝐬𝑗‖2
𝐬𝑗

‖𝐬𝑗‖
. (6)

The initial coupling coefficients are then iteratively refined by mea-
suring the agreement between the current output 𝐯𝑗 and �̂�𝑗|𝑖 using the
scalar product 𝐯𝑗 ⋅ �̂�𝑗|𝑖, until reaching the preset maximum number of
iterations,

𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + 𝐯𝑗 ⋅ �̂�𝑗|𝑖. (7)

The coupling coefficients decide how information flows between cap-
sules in MLF-PrimaryCaps and EmotionCaps.

In addition, this model uses a separate margin loss for each emotion
capsule. The margin loss 𝐿𝑘 for a capsule representing class k is as
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Table 3
The format of DEAP Dataset.

Array name Array shape Array contents

Data 40 × 40 × 8064 Video/trial × channel × data
Labels 40 × 4 Video/trial × label(valence,

arousal, dominance, liking)

Table 4
The format of DREAMER Dataset.

Array name Array shape Array contents

ExperData 18 × 14 × 25 472* Video/trial × channel × data
Baseline 18 × 14 × 7808 Video/trial × channel × data
Labels 18 × 3 Video/trial × label (valence,

arousal, dominance)

25 472* means the average length of the trial.

follows:

𝐿𝑘 = 𝑇𝑘 max(0, 𝑚+ − ‖𝐯𝑘‖)2 + 𝜆(1 − 𝑇𝑘 max(0, ‖𝐯𝑘‖ − 𝑚−)2), (8)

where 𝑇𝑘 is an indication of the class. 𝑇𝑘 = 1 if an emotion of class 𝑘 is
present, otherwise 𝑇𝑘 = 0. 𝑚+ and 𝑚− are used to punish false positives
and false negatives, respectively. We set 𝑚+ = 0.9 and 𝑚− = 0.1. In other
words, if class 𝑘 exists, ‖𝐯𝑘‖ will not be less than 0.9, otherwise, ‖𝐯𝑘‖
will not be greater than 0.1. The 𝜆 adjusts the proportion of the loss
for absent emotional classes. We use 𝜆 = 0.5, which means punishment
for false positives is roughly twice as important as punishment for false
negatives. The total loss is simply the sum of the losses of all emotional
capsules.

Table 1 shows the number of trainable parameters of the pro-
posed model and the version without bottleneck. It can be seen that
bottleneck layer makes our model have significantly less number of
parameters. The structural parameters of the proposed model are shown
in Table 2.

4. Experiments

In this section, we first introduce two popular public datasets for
studying EEG-based emotion recognition and the results of data prepro-
cessing. Then, the implementation details of our model are introduced.
Next, we present the verification of preprocessing method. Finally, we
compare our method with the state-of-the-art methods, and show the
accuracy, training time, and testing time of different methods.

4.1. Datasets

The DEAP and DREAMER datasets have been widely used in the
study of EEG-based emotion recognition. We also employ them in
this paper to verify the effectiveness of the proposed MLF-CapsNet-
based method. The DEAP dataset records 32-channel EEG signals and
8-channel peripheral physiological signals of 32 subjects when they
are watching 40 one-minute long music videos. Just like most previ-
ous studies [25,26,29,44], only the EEG signals are used for emotion
recognition. The DEAP dataset provides a pre-processed version, and
the pre-processed version is used in the article. In the pre-processed
version, EEG signals are down-sampled to 128 Hz. A bandpass fre-
quency filter from 4.0–45.0 Hz is applied, and the eye artifacts are
removed with a blind source separation technique such as independent
component analysis (ICA). Each EEG signal contains a 3 s baseline
signal recorded in relax state and a 60 s experimental signal recorded
under stimulation. Participants rate their levels of arousal, valence,
liking and dominance from 1 to 9 after watching each video. The format
of DEAP dataset is shown in Table 3.

The DREAMER dataset contains EEG data of 23 subjects (14 males
and 9 females), which are collected via 14 EEG electrodes from the
subjects when they are watching 18 film clips. Each film clip lasts 65 s

to 393 s, which is thought to be sufficient for eliciting single emotion.
The average length of film clips is 199 s. The data collection begins with
a neutral film clip watching to help the subjects return to the neutral
emotion state in each new trial of data collection, and also to serve as
the baseline signals. All the EEG signals are recorded at a sampling rate
of 128 Hz, and have been filtered by bandpass Hamming sinc linear
phase FIR filters. The artifact subspace reconstruction (ASR) method
is used for artifacts removal. After watching a film clip, subjects rate
their levels of arousal, valence and dominance from 1 to 5. Finally,
there are experimental signals (ExperData), baseline signals and labels
in DREAMER dataset. The format of DREAMER dataset is described in
Table 4.

As most previous studies [25,26,29,44], we adopt the valence-
arousal-dominance model for DEAP and DREAMER in our experiments.
In these works, thresholds are set to divide each emotion dimension
into two categories: low/high valence, low/high arousal and low/high
dominance. The thresholds are 5 and 3 for DEAP and DREAMER
respectively. For example, in DEAP, the label is low when the rating
is less than 5, and the label is high when the rating is greater than
or equal to 5. In DREAMER, the label is low when the rating is less
than 3, and the label is high when the rating is greater than or equal
to 3. In this way, the recognition task is actually a binary classification
problem for each emotion dimension. By the way, the dominance scores
of the 40 experimental signals of the 27th subject in DEAP dataset are
all greater than 5, resulting in labels with only one category of high,
and the model trained by such samples is invalid. Therefore, we do not
use the samples of the 27th subject to do experiment on dominance of
DEAP dataset.

After segmenting the preprocessed experimental signals using 1s
sliding window containing 128 sampling points, each signal of DEAP
dataset can be divided into 60 segments. Because there are 40 exper-
imental signals for each subject in DEAP, we obtain 2400 (40 trials
× 60 segments) EEG samples for each subject. However, the length of
each experimental signal in DREAMER datase is different because each
film clip lasts from 65 s to 393 s. As a result, we get different number
of EEG samples for each experimental signal of DREAMER dataset. But
we finally get 3728 EEG samples for each subject in DREAMER, because
each subject has the same total length of 18 experimental signals. As a
result, every EEG sample in DEAP and DREAMER is a 32 × 128 matrix
and a 14 × 128 matrix, respectively.

4.2. Implementation details

We adopt 10-fold cross validation [46] to evaluate the performance
of our method and comparison methods. Specifically, the average
accuracy of the 10-fold cross-validation is taken as the result of one
subject, and then the average accuracy of all the subjects are reported
as the final accuracy. For our method, we adopt Adam optimizer [47]
to minimize the margin loss function, and set maximum number of
iteration to 3. For DEAP, we set the learning rate, batch size and
number of epochs to 10−5, 100 and 40, respectively. For DREAMER,
we set the learning rate, batch size and number of epochs to 10−4, 100
and 30, respectively. We implement our method via the TensorFlow
framework [48], and the code is available online.1

4.3. Verification of preprocessing method

Yang et al. proposed the preprocessing method of baseline removal
and had validated the effectiveness for DT, MLP, CNN-RNN and Cont-
CNN on DEAP dataset [25,44]. In order to validate that baseline
removal is also suited with our model, we conduct two experiments.
The first one is to perform the recognition task without baseline re-
moval, and the other one is to perform the recognition task with
baseline removal.

1 https://github.com/2018110060ding/EmotionCaps.

https://github.com/2018110060ding/EmotionCaps
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Table 5
Average accuracy (%) of two experiments on DEAP and DREAMER (mean ± std. dev.).

Datasets Experiments Valence Arousal Dominance

DEAP 1* 62.57 ± 5.85 64.36 ± 7.96 64.54 ± 10.47
2** 97.97 ± 1.67 98.31 ± 1.24 98.32 ± 1.20

DREAMER 1* 77.10 ± 6.33 78.39 ± 5.72 77.89 ± 5.64
2** 94.59 ± 3.77 95.26 ± 3.63 95.13 ± 3.81

1* It means to perform the recognition task without baseline removal.
2** It means to perform the recognition task with baseline removal.

Table 6
Average accuracy (%) of different methods on valence, arousal and dominance
classification tasks of DEAP dataset (mean ± std. dev.).

Valence Arousal Dominance

DT 71.63 ± 4.64 73.70 ± 5.01 73.36 ± 7.70
MLP 87.82 ± 6.05 88.68 ± 4.96 88.59 ± 5.95
SVM 88.65 ± 6.18 89.07 ± 5.89 89.13 ± 6.59
Cont-CNN 89.45 ± 4.35 90.24 ± 4.02 90.25 ± 4.87
CNN-RNN 89.92 ± 2.96 90.81 ± 2.94 90.90 ± 3.01
DGCNN 92.55 ± 3.53 93.50 ± 3.93 93.50 ± 3.69
gcForest 97.69 ± 1.22 97.53 ± 1.52 97.62 ± 1.39
CapsNet 98.22 ± 1.29 98.05 ± 1.42 98.44 ± 1.09
Ours 97.97 ± 1.67 98.31 ± 1.24 98.32 ± 1.20

Table 7
Average accuracy (%) of different methods on valence, arousal and dominance
classification tasks of DREAMER dataset (mean ± std. dev.).

Valence Arousal Dominance

DT 75.53 ± 6.71 75.74 ± 6.44 76.40 ± 5.68
MLP 83.64 ± 5.97 83.71 ± 5.39 83.90 ± 5.32
SVM 87.14 ± 5.20 87.03 ± 4.88 87.18 ± 4.87
Cont-CNN 84.54 ± 5.00 84.84 ± 4.86 85.05 ± 4.96
CNN-RNN 79.93 ± 6.65 81.48 ± 6.33 80.94 ± 5.66
DGCNN 89.59 ± 5.13 88.93 ± 3.93 88.63 ± 5.13
gcForest 89.03 ± 5.56 90.41 ± 5.33 89.89 ± 6.19
CapsNet 93.94 ± 4.12 94.29 ± 4.39 94.45 ± 4.42
Ours 94.59 ± 3.77 95.26 ± 3.63 95.13 ± 3.81

As shown in Table 5, the baseline removal can significantly im-
prove the recognition accuracy by nearly 34% and 17% on DEAP
and DREAMER, respectively, which indicates that this approach is
also suited with our model. By the way, baseline removal has a great
influence on the recognition accuracy, especially the accuracy of the
data-driven methods, which is consistent with the results of [25,44].

4.4. Comparison with the state-of-the-art methods

To further validate the proposed MLF-CapsNet-based method, we
compared our method with the start-of-the-art methods on DEAP
and DREAMER, respectively, including the decision tree (DT) [25],
the multi-layer perceptron (MLP) [25], the support vector machine
(SVM) [49], the continuous CNN (Cont-CNN) [25], the CNN-RNN [44],
the dynamical graph convolutional neural network (DGCNN) [27],
and the multi-grained cascade forest (gcForest) [50]. Yang et al. use
DE features extracted from theta (4–7 Hz), alpha (8–13 Hz), beta
(14–30 Hz) and gamma (31–50 Hz) frequency bands of preprocessed
EEG signals as input to DT, MLP and SVM [25]. The Cont-CNN is
a convolutional neural network without pooling operation. It takes
the constructed 3D EEG cube as input, where the 3D EEG cube is a
3-dimensional representation that combines DE features with spatial
information among electrodes [25]. The CNN-RNN is a hybrid neural
network. It extracts spatial and temporal features from constructed 2D
EEG frames and 1D EEG sequences, respectively. The DGCNN is pro-
posed by Song et al. that can dynamically learn the internal relationship
between different EEG channels represented by an adjacency matrix to
classify EEG emotions [27]. The gcForest is a model based on deep
forest, which is applied to EEG-based emotion recognition by Cheng
et al. in 2020 [50]. The authors adopt it to extract spatial and temporal

Fig. 5. Average accuracy (%) of each subject in DEAP dataset on valence classification
task using different methods.

Fig. 6. Average accuracy (%) of each subject in DEAP dataset on arousal classification
task using different methods.

features from constructed 2D EEG frames like Yang et al. do [44].
Among these seven comparison methods, the CNN-RNN-based method
and gcForest-based method both use 2D EEG frames as input, which
are both end-to-end frameworks eliminating manual feature extraction.
The remaining five methods have to manually extract DE features from
four frequency bands. These seven methods use the same preprocessing
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Fig. 7. Average accuracy (%) of each subject in DEAP dataset on dominance
classification task using different methods.

Fig. 8. Average accuracy (%) of each subject in DREAMER dataset on valence
classification task using different methods.

method of baseline removal, the same slice length and the same 10-
fold cross validation as our method, which ensures the fairness of
comparison experiments.

Table 6 reports the average accuracy and standard deviation of
32 subjects on valence, arousal and dominance classification tasks on
DEAP. It can be seen that our method significantly outperform the other
seven methods except the original CapsNet. First, compared with the
two latest CNN-based methods (Cont-CNN and CNN-RNN), our method
improves the recognition accuracy by about 8% on three recognition
tasks. Second, compared with the two data-driven methods (CNN-RNN
and DGCNN), our method also shows advantages. Third, our method
has the smallest standard deviation among all the methods, indicating
its higher stability when applied to different subjects. Figs. 5–7 provide
more detailed and distinct comparison among different methods. It
can be seen that the accuracy of our method on valence, arousal and
dominance classification tasks is higher than 94%, 95% and 95%,
respectively, and our method has clear advantage over other methods

Fig. 9. Average accuracy (%) of each subject in DREAMER dataset on arousal
classification task using different methods.

Table 8
Training time and testing time of different methods on DEAP and DREAMER datasets.

DEAP DREAMER

Training Testing Training Testing
time (s) time (ms) time (s) time (ms)

DT 0.2928 0.0015 0.4548 0.0008
MLP 33.7596 0.0063 52.3274 0.0025
SVM 0.7508 0.1846 1.4115 0.0988
Cont-CNN 12.6405 0.1141 20.6040 0.0767
CNN-RNN 656.3955 1.0554 602.0744 0.9210
DGCNN 7.0225 0.3208 10.2529 0.1820
gcForest 693.4861 10.5672 1307.406 7.4973
CapsNet 389.9597 7.6667 244.4818 1.7129
Ours 1338.3379 48.2138 635.9729 14.8009

with higher accuracy and stability. Moreover, compared to the origi-
nal CapsNet-based method, the proposed MLF-CapsNet-based method
improves accuracy and stability on arousal classification task.

Table 7 shows the average accuracy and standard deviation of
23 subjects on valence, arousal and dominance classification tasks on
DREAMER. Similar to DEAP dataset, our method also significantly
outperform other methods in both accuracy and standard deviation.
Specifically, our method improves the recognition accuracy by about
10% on three recognition tasks compared with the two latest CNN-
based methods (Cont-CNN and CNN-RNN). In particular, when com-
pared with the two data-driven methods, our method has obvious
advantages. Figs. 8–10 provide the recognition accuracy of 23 subjects
on valence, arousal and dominance recognition tasks, respectively. It
can be also seen that our method has clear advantage over other
methods with higher accuracy and stability. Specifically, the accuracy
of our method on valence and the other two classification tasks is
greater than 85% and 86%, respectively. Furthermore, compared to the
original CapsNet-based method, our method improves the recognition
accuracy by about 1% on three recognition tasks.

4.5. Training and testing time

In our experiments, DT, SVM, and gcForest are trained on a INTEL
i7-7800X CPU. MLP, Cont-CNN, CNN-RNN, and DGCNN are trained on
a NVIDIA GPU with TensorFlow framework. The proposed method is
trained on two NVIDIA GPU with TensorFlow framework. The training
time and testing time of each method are shown in Table 8. It can be
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Table 9
Details of several reported studies on DEAP dataset.

Studies Inputs Models Evaluation Methods Accuracy (%)

Valence Arousal Dominance

Salma et al. [29] Raw EEG signals LSTM 4-fold cross validation 85.45 85.65 –

Laura et al. [51] Statistical features KNN Leave-one-out 89.61 89.84 –cross validation

Chao et al. [52] Statistical, power, Ensemble DBN 10-fold cross validation 76.83 75.92 –and HHS features with Glia Chains

Kwon et al. [53] EEG Spectrograms Fusion CNN Leave-one-out 80.46 76.56 –and GSR features cross validation

Gao et al. [54] DE features Dense CNN 10-fold cross validation 92.24 92.92 –

Sharma et al. [55] Higher order Bi-LSTM 10-fold cross validation 84.16 85.21 –statistics

Chen et al. [56] 2D PSD Cascaded 10-fold cross validation 93.64 93.26 –mesh sequence CNN-RNN

The proposed method Raw EEG signals MLF-CapsNet 10-fold cross validation 97.97 98.31 98.32

Table 10
Details of several reported studies on DREAMER dataset.

Studies Inputs Models Evaluation methods Accuracy (%)

Valence Arousal Dominance

Katsigiannis et al. [35] PSD SVM 10-fold cross validation 62.49 62.17 61.84

Siddharth et al. [57] EEG-PSD images-based VGG-16 network Leave-one-out 78.99 79.23 –Deep-Learning features cross validation

Liu et al. [58] DE Deep CCA Leave-one-out 90.57 88.99 90.67cross validation

The proposed method Raw EEG signals MLF-CapsNet 10-fold cross validation 94.59 95.26 95.13

seen that DT, MLP, SVM, Cont-CNN and DGCNN have lower compu-
tational cost of training and testing than CNN-RNN, CapsNet and our
model. This is because the former are all feature-driven methods, and
the latter are all data-driven methods. Compared with the data-driven
methods, our model requires longer training time since our multi-level
features increase the complexity of the model. This is the inadequacy
of our model and needs further improvement in the future.

4.6. Comparison with several existing studies

Finally, we compare the proposed method with several existing
studies using the same datasets, i.e., DEAP dataset and DREAMER
dataset. Tables 9 and 10 show the details of the existing studies on
DEAP and DREAMER, respectively. Items crossed in tables are not
indicated in the corresponding references. From the results of EEG
emotion recognition summarized in Tables 9 and 10, we can see that
our method improves the current state-of-the-art results on both DEAP
and DREAMER. Specifically, on DEAP dataset, our method achieves the
highest accuracy of 97.97%, 98.31% and 98.32% for valence, arousal
and dominance, respectively. The accuracy achieved by our method is
5% higher than the second highest accuracy [56] listed in Table 9.
On DREAMER dataset, our method achieves the best performance of
94.59%, 95.26% and 95.13% for valence, arousal and dominance,
respectively, which also improves the accuracy by about 5% compared
with the second highest accuracy [58] listed in Table 10. Moreover,
compared with the methods in references [56] and [58], our method
uses raw EEG signals as inputs, which eliminates the complicated
process of manually extracting features.

5. Discussion

It can be seen from the experimental results that the proposed
method significantly outperforms some state-of-the-art methods on the
subject-dependent task, in particular, our method is data-driven, elim-
inating complex feature engineering. It is necessary to analyze why
the proposed method can achieve such a superior performance on

Fig. 10. Average accuracy (%) of each subject in DREAMER dataset on dominance
classification task using different methods.

multi-channel EEG-based emotion recognition. The superior recogni-
tion performance of our method is most likely due to the following
major points:

1. There is a strong correlation between emotional states and
brain functional connectivity patterns. Specifically, different
emotional states cause different activities in various functional
areas of the brain, and specific connections between different
functional regions [32,33]. Interestingly, the proposed frame-
work adopts capsules to encode entities, and adopts transforma-
tion matrices to encode the intrinsic spatial relationship between
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a part and a whole of an object, which makes itself can well rep-
resent the relationship between the parts of a object. Therefore,
our method provides a useful way to characterize the intrinsic
relationships among the various EEG channels. Specifically, the
primary capsules encode the brain areas, and the transformation
matrices encode the connection among different brain areas.
These innovative structures are advantageous for extracting the
most discriminative features for the emotion recognition task.

2. Compared to handwritten digital images in the MINIST dataset
which is used to evaluate the performance of original CapsNet,
EEG signals have more complex internal representation related
to emotion. The proposed framework incorporates multi-level
feature maps learned by different layers in forming the primary
capsules so that the capability of feature representation can be
enhanced, which makes our method achieve better performance
than that of the original CapsNet on multi-channel EEG-based
emotion recognition task.

3. The size of multi-channel EEG signal is usually large, which will
increase the amount of parameters and computational complex-
ity of network. The proposed framework adopts a bottleneck
layer to reduce the number of channel of concatenated feature
maps, which makes our method have significantly less number
of parameters without sacrificing performance on multi-channel
EEG-based emotion recognition task.

6. Conclusion

In this paper, we propose an end-to-end MLF-CapsNet framework
for multi-channel EEG emotion recognition. Our proposed framework
can identify the intrinsic relationship among various EEG channels well.
We combine multi-level features extracted from different convolution
layers to form primary capsules. Besides, we add bottleneck layer to re-
duce the amount of parameters and accelerate the speed of calculation.
Finally, experiments on DEAP dataset and DREAMER dataset are con-
ducted. Our method achieves average accuracy of 97.97%, 98.31% and
98.32% for valence, arousal and dominance on the DEAP dataset, and
achieves average accuracy of 94.59%, 95.26% and 95.13% for valence,
arousal and dominance on the DREAMER dataset, respectively. Ex-
perimental results demonstrate that the proposed MLF-CapsNet-based
method achieves higher accuracy than some state-of-the-art DL-based
methods on the subject-dependent task, such as the Cont-CNN, CNN-
RNN, DGCNN and gcForest methods. Moreover, compared with original
CapsNet, our method improves the accuracy by 0.3% on arousal classi-
fication task of DEAP dataset, and improves the accuracy by about 1%
on three classification tasks of DREAMER dataset, which validates the
efficiency of our method. In the future, we will study the effectiveness
of the proposed MLF-CapsNet-based framework in subject-independent
EEG-based emotion recognition through domain adaptation and do-
main generalization, and reduce the complexity of the network through
sharing parameters between capsule layers.
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