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Abstract— Noncontact and low-cost heart rate (HR) measure-
ment based on imaging photoplethysmography (iPPG) technol-
ogy is commonly desired for health care monitoring. However,
the usually employed red–green–blue (RGB) cameras are sen-
sitive to illumination variations and cannot work under dark
situations. In this study, we propose a novel framework of
applying joint blind source separation with delay-coordinate
transformation (DCT-JBSS) to evaluate HR from a single-channel
near-infrared (NIR) camera in dark situation. First, three facial
regions of interest (ROIs) are determined by face detection
technique and a single-channel signal is constructed through a
frame-by-frame pixel averaging within each ROI. Second, each
single-channel signal is transformed into time-delayed multichan-
nel signal through DCT and then treated as a separate ROI signal
set. Third, the three ROI signal sets are simultaneously processed
by JBSS to derive the underlying shared HR source component
vector (SCV), which is usually ordered the first and has the
highest correlation across each signal set. Finally, the fast Fourier
transform (FFT) is applied to the HR SCV and the corresponding
dominant frequency (within the range from 0.7 to 2.5 Hz) with the
highest signal-to-noise ratio (SNR) is determined as the target HR
frequency. The proposed framework, as well as several other typ-
ical iPPG methods, is validated on public DROZY and MR-NIRP
databases. The proposed method achieves the best performance,
providing a probable way to widen the application of remote and
continuous HR measurement during night conditions.
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I. INTRODUCTION

HEART rate (HR) is an important vital sign of human
body, which can reflect the physiological and mental

status of humans. HR measurement is highly desired for many
applications in the fields of continuous health monitoring and
driver’s status monitoring that include night situations. Con-
ventional contact HR measurements require patients to wear
adhesive gel patches or finger clips, which may cause skin
allergy or discomfort. In contrast, noncontact HR measurement
provides a convenient way to estimate HR for cases where
direct contact with the skin has to be prevented (e.g., neonates
and subjects with skin damage) or prolonged monitoring
is desired (e.g., surveillance and fitness) [1], [2]. Recently,
researchers have paid growing attention to noncontact HR
measurement techniques. The imaging photoplethysmogra-
phy (iPPG) is such a kind of video-based HR monitoring
method, which detects pulsatile information caused by the
cardiac activity from invisible facial color changes within the
exposed skin from a distance.

The potentials of iPPG are promising. However, the iPPG
pulsatile signal is quite weak and can be easily contaminated
by noise interference, typically as illumination variations and
motion artifacts [3], [4]. A series of studies have been pro-
posed to improve the performance of HR measurement during
realistic situations. Among them, the blind source separa-
tion (BSS)-based methods are widely utilized. As indicated
in [5], the skin color signal can be treated as a combination
of time-varying intensity signal, varying specular reflection
signal, and pulsatile signal. Therefore, the pulsatile signal can
be demixed by BSS techniques [e.g., independent component
analysis (ICA)] under given statistical assumptions.

Usually, the iPPG technique adopts the red–green–blue
(RGB) cameras that can be effective during the ambient light
situation. However, the RGB cameras will be inaccurate or
even powerless during dark and night situations [6]. The study
of Aarts et al. [1] demonstrated that the RGB cameras could
well monitor the HR of new infants in the Neonatal Intensive
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Care Unit (NICU). However, low ambient light level and
infant motions would prevent the successful HR measurement.
An alternative scheme is to employ a near-infrared (NIR)
camera with an active illumination to remotely measure HR
under dark situations while significantly reducing the illumi-
nation variations [7]. Unlike the three-color-channel signal
provided by RGB cameras, only one single-channel signal
is derived from NIR cameras. As we know, the number of
the extracted sources by BSS is not larger than that of the
observation channels. In other words, insufficient channel of
observations will influence the effect of demixing. Conse-
quently, the BSS technique cannot be directly applied to
the single-channel NIR signal. Zhao et al. [8] proposed to
convert the single-channel signal from NIR images into the
multichannel signal through delay-coordinate transformation
(DCT), and then, ICA-based BSS was followed to evaluate
the HR in the presence of motion artifacts. The principle
of DCT is that the reconstructed state space is equivalent to
that of the original single-channel signal consisting of all the
dynamic variables. Then, the transformed multichannel signal
containing the pulsatile information in a mixed form can be
demixed by the BSS method.

On the other hand, it is well known that the HR information
is commonly shared on different skin regions when the subject
keeps relatively static. Conventional BSS methods, such as
ICA, usually work with a single signal set consisting of chan-
nels from a single region of interest (ROI) (RGB channels) or
multiple ROIs. Some studies [9]–[11] have demonstrated that
extracting the iPPG signal from multiple ROIs simultaneously
based on BSS techniques can improve the performance of HR
measurement. For instance, Favilla et al. demonstrated that
the HR could be extracted by applying the BSS technique to
multiple green-channel signals extracted from multiple ROIs.
The mean absolute error (MAE) was reduced about 3.81 ms
for normal-to-normal intervals when using ICA preprocessing,
compared to that of directly using the single green-channel
signal followed by the bandpass filter [9].

However, on the one hand, the ICA-based BSS methods
have a problem of permutation indeterminacy [12]. On the
other hand, they can only handle a single signal set. In fact,
different facial ROIs all contain pulsatile information although
the qualities of them are different. The joint BSS (JBSS),
instead of BSS, can extract the underlying sources within each
signal set while keeping a consistent order of the extracted
sources across multiple signal sets. Therefore, JBSS can
solve the permutation indeterminacy problem while making
full use of the correlation of sources across the multiple
sets. [13]–[15].

Inspired by the success of DCT and JBSS separately,
we propose a novel framework of applying the JBSS technique
to multiple ROI signal sets to measure HR from a single
NIR camera during dark situations. In order to make the
single-channel NIR signal suitable for the input of the JBSS,
the original single-channel NIR signal will first be constructed
into the multiple-channel signal via the DCT technique and
then treated as a separate ROI signal set. Under the assumption
that the state space of the generated multichannel signal set

is equivalent to that of the original single-channel signal
including all the dynamic variables, each multichannel signal
set contains the pulsatile information. Meanwhile, the JBSS
provides a powerful capability to demix the shared source
signal across multiple signal sets with the same modality or
even distinct modalities [16]. Since NIR cameras, with an
active illumination, can significantly reduce the illumination
variations and suitable for darkness usage, the most common
sources existing in all NIR signal sets derived from different
ROIs are considered to contain the pulsatile information under
relatively static situations. In this case, the underlying pulsatile
sources can be separated by JBSS from each signal set,
which usually has the largest correlation among all the source
components.

The main contributions of this article are as follows. To the
best of our knowledge, it is the first time that the framework
of DCT-JBSS is proposed to remotely estimate HR for NIR
videos. With the help of DCT, the single-channel signal can
be expanded to a multichannel signal set, which contains the
pulsatile information in a mixed form. Besides, through JBSS
instead of BSS, multiple ROIs can be simultaneously utilized
to provide the underlying common pulsatile information across
each multichannel signal set, which improves the performance
of HR measurement during dark and relatively static situations.
The performance of the proposed DCT-JBSS framework,
as well as other typical iPPG methods, has been evaluated
and compared on publicly available DROZY and MR-NIRP
databases. The best performances have been achieved by our
proposed DCT-JBSS.

The remainder of this article is organized as follows.
Section II introduces some existing work closely related to
our proposed approach. Section III describes the details of
our methods. Section IV introduces the experimental setup,
results and discussions. Section V concludes our study.

II. RELATED WORK

The iPPG methods based on RGB videos have achieved
good performance of HR measurement during bright and
stable illumination environments, even in the presence of
motion artifacts. An increasing number of studies, based
on realistic optical models and advanced signal processing
techniques, have been conducted to remotely measure the
PPG signals from facial videos [5], [17]–[20]. As for motion
artifact elimination, the methods can be divided into BSS- and
motion-based ones according to the recently proposed mathe-
matical models in [5]. The progress has been summarized in
several relevant review articles [4], [21], [22].

Since NIR cameras, with active illuminations, are much
less sensitive to illumination variations than RGB ones, they
are usually adopted to measure HR during the situations
with varying illumination or full darkness. For instance,
Jeanne et al. [23] demonstrated that NIR cameras are feasi-
ble to estimate HR under highly dynamic light conditions,
including dark situations. The results obtained by their system
show high accuracy (root-mean-square error (RMSE) less than
1 beat per minute (bpm) under disco-light situations) and a
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correlation score above 0.99 when compared with a reference
measurement method. Van Gastel et al. [24] demonstrated
that respiration rate (RR) can be successfully detected with
a camera in both visible and dark situations by using the
close similarity between pulse and respiration-induced color
variations of the skin. The MAE for guided breathing sce-
narios is 1.74 and 2.27 bpm in visible light and infrared,
respectively. Nowara et al. [25] proposed a novel denoising
algorithm (SparsePPG) based on robust principal components
analysis (RPCA) and sparse frequency spectrum estimation to
measure HR during in-car situations. They have found that it
is possible to accurately measure HR using NIR cameras with
an active 940-nm illumination, in both controlled and varying
light situations. However, the signal-to-noise ratio (SNR) is
significantly decreased in NIR compared to RGB in controlled
lighting conditions. Kado et al. [26] proposed to measure HR
using simultaneously recorded RGB and NIR face videos,
based on the key idea of automatically selecting suitable face
patches for HR estimation in both spatial and spectral domains.
The simultaneous usage of RGB and NIR enabled robust HR
estimation under various illumination conditions. It can be
discovered from these studies that usually, a single-channel
NIR signal is processed to measure HR in case of illumination
variations without motion artifacts.

For more realistic situations, many algorithms adopted
for RGB videos can also be employed for NIR videos.
For instance, Verkruysse et al. found that fast Fourier
transform (FFT) combined with bandpass filters to the green
channel of the facial RGB videos could achieve the best HR
measurement compared to that of the red or blue channel [27].
Chen et al. [28] applied a similar method to the single
NIR channel to obtain a robust HR measurement. In order
to resist the influence of the changing illumination when
capturing RGB videos, Chen et al. [29] applied ensemble
empirical mode decomposition (EEMD) to the green channel
for separating the real pulsatile signal from the environmental
illumination noise. Analogously, Zhang et al. [30] used an
empirical mode decomposition (EMD) technique to derive
HR measurements under the driving situation with complex
illumination variations from NIR videos. An alternative way
to measure HR from NIR videos is according to the skin or
motion magnification framework [31]. He et al. [32] employed
an NIR camera in conjunction with Eulerian video magni-
fication (EVM) method to measure HR in dark conditions.
Van Gastel et al. [24] verified the feasibility of motion robust
pulse detection in NIR based on the PBV method, which
was shown a good HR measurement performance for rPPG in
visible light. In order to make the PBV method workable, three
NIR cameras were constructed by the three monochrome cam-
eras with different optical filters, with the center wavelengths
of 675, 800, and 842 nm. It should be mentioned that although
motion-based methods could also achieve a successful HR
measurement performance from a single ROI for NIR videos,
they usually need to employ at least two NIR cameras with
different wavelengths [24]. In this article, we utilize only one
single NIR camera, and we mainly focus on the BSS-based
methods.

A. Conventional BSS

As known, the pulsatile information together with spec-
ular and diffuse reflections can be modeled as an optical
model [5], [33]. Based on this model, the skin color chan-
nel signal can be treated as a linear combination of the
time-varying intensity signal, the varying specular reflection
signal, and the pulsatile signal [5]. Therefore, the pulsatile
signal can be demixed and derived by applying the BSS
technique (e.g., ICA) to RGB channels under certain statistical
assumptions. Poh et al. [34] proposed an ICA-based BSS
algorithm to extract the HR component using a single facial
ROI during subtle-motion conditions. The RMSE correspond-
ing to motion situations was sharply reduced, demonstrating
the feasibility of BSS for HR measurement. Sun et al. [35]
introduced an artifact-elimination method consisting of planar
motion compensation and BSS. Their BSS mainly referred
to the single-channel ICA (SCICA), which isolated multiple
components using only the temporal information inherent in
a single-channel signal. SCICA assumes that a set of the
observed data points from a single-channel signal is a linear
combination of unknown and statistically independent sources.
Similarly, Zhao et al. [8] extracted both HR and RR from NIR
videos by combining DCT with ICA (also called SCICA). The
multichannel signal was generated from the single-channel
signal via DCT and the desired pulsatile component was
demixed and separated via BSS.

The abovementioned studies mainly focus on choosing one
single facial ROI to derive HR. In fact, different facial ROIs
all contain pulsatile information although the qualities of them
are different. Therefore, several studies aim to improve the
performance of HR estimation by simultaneously analyzing
multiple different ROIs. Lam and Kuno [36] assumed that the
extraction of HR from multiple facial ROIs could be treated
as a linear BSS problem. According to the skin appearance
model that describes how illumination variations and cardiac
activity affect the appearance of the skin over time, HR can be
well estimated by randomly selecting pairs of green-channel
traces and majority voting. Wei et al. [11] proposed to measure
HR by applying a second-order BSS to the six-channel RGB
signals that yielded from dual facial ROIs. This method
can suppress the respiratory motion artifacts for robust HR
measurement. Favilla et al. [9] selected three different areas
of facial skin, including the forehead, the left cheek, and
the right cheek as ROIs, and obtained a three-green-channel
signal. The detrended three-channel signal was fed into ICA
to derive three independent components (ICs). By applying
FFT to the ICs, the pulsatile component was identified as
the one with the dominant frequency falling into the range
from 0.75 to 2.0 Hz. The results prove that the proposed
method can effectively improve the HR assessment from the
iPPG signal. All these studies propose to utilize multiple
ROIs and the conventional BSS technique. On the one hand,
the conventional BSS-based methods, such as ICA, have a
problem of permutation indeterminacy [37]. On the other
hand, due to the fact that conventional BSS techniques can
only handle one single signal set, the underlying shared pulse
information across multiple ROIs cannot be well explored.
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B. Joint BSS

With the increasing availability of multiple signal sets,
various JBSS methods have been proposed to simultaneously
accommodate them. Chen et al. [16] provided a thorough
overview of representative JBSS methods for realistic neuro-
physiological applications from multiset and multimodal per-
spectives. They highlighted the benefits of the JBSS methods
for neurophysiological data analysis. JBSS tries to extract
the underlying sources within each signal set while keeping
a consistent order of the extracted sources across multiple
signal sets. Thereby, JBSS methods are excellent options for
more accurate HR measurement. For instance, Guo et al. [13]
first introduced the JBSS method into iPPG fields. They
applied the independent vector analysis (IVA) to jointly ana-
lyze the multiple signal sets derived from multiple facial
ROIs. Preliminary experimental results revealed an improved
performance of HR measurement compared with that of the
ICA-based BSS method. Later, Qi et al. [14] utilized the JBSS
approach, including IVA and multiset canonical correlation
analysis (MCCA) for HR measurement by exploring corre-
lations among multiple RGB facial ROIs. The experimental
results on a large public database showed that the JBSS
method outperformed previous BSS methods. In order to
eliminate illumination variations, Cheng et al. [15] proposed
to apply a JBSS-EEMD framework to facial and background
ROIs for extracting the underlying shared illumination vari-
ation sources, which were then removed from the facial
ROI to reconstruct the clean facial ROI signal set. By this
means, a robust noncontact HR measurement can be real-
ized even during dynamically changing illumination variation
situations.

To the best of our knowledge, there are a few studies
aiming to evaluate HR by simultaneously adopting multiple
facial ROIs from NIR videos, and JBSS methods have not
yet been employed to measure HR for NIR videos. In this
article, we propose a framework of JBSS with DCT technol-
ogy, termed DCT-JBSS, to extract the pulsatile signal from
multiple facial ROIs for NIR videos on public databases.
The single NIR channel signal will be transformed into a
multichannel signal set through the DCT technology, the state
space of which is assumed equivalent to that of the original
single-channel signal, including different dynamic variables.
Besides, since NIR cameras are insensitive to illumination
variations and suitable for HR measurement under totally
dark situations, the most common source existing in all facial
ROIs contains the pulsatile information under relatively static
situations. Consequently, the JBSS technique is a preferred
option to derive the pulsatile source from multiple ROI signal
sets with multichannels generated by DCT for accurate HR
measurement.

It is worth mentioning that we mainly focus on the
BSS-based methods to measure HR in this article. There are
many other advanced iPPG methods, such as model-based
methods and deep-learning-based methods for RGB-based HR
measurement for realistic situations. The progress has been
summarized in several relevant reviews or articles [4], [5],
[17], [18], [38]–[40].

III. METHOD

The flowchart of the proposed DCT-JBSS framework is
shown in Fig. 1. First, three facial ROIs are identified through a
face detection algorithm for each frame, and the corresponding
pixel averaging of each ROI is calculated and concatenated
frame by frame to generate the single NIR channel sig-
nal. Second, the DCT technique is applied to each single-
NIR-channel signal for deriving multiple ROI signal sets.
Third, the underlying pulsatile sources commonly existing in
all the ROI signal sets will be extracted by the IVA-based
JBSS algorithm and further processed by FFT to obtain the
corresponding power spectral density (PSD). The dominant
frequency with the highest SNR falling in the normal HR range
of interest (ROI) will be selected as the target HR frequency.
We elaborate the detailed main steps in the following.

A. ROI Detection and Tracking

Reliable ROI detection and tracking are important for robust
RGB-video-based HR estimation, which is also important to
HR estimation for NIR videos. As demonstrated in [41],
the forehead and both cheeks are optimal ROIs. However, since
the DROZY database was designed to simultaneously capture
facial videos and polysomnography (PSG) signals, including
electrocardiogram (ECG), electroencephalogram (EEG), elec-
trooculogram (EOG), and electromyogram (EMG) using PSG
electrodes, some of the PSG electrodes are placed on one side
(usually the right side) of the cheek. Besides, the captured face
of the DROZY database accounted for a small proportion of
the whole image, which meant that the area of one side of
cheek was quite small. In order to cover a certain number
of pixels within an ROI, a whole cheek ROI, including the
nose part, was selected. In addition, as stated in [42] and [43],
the chin ROI is rich in capillaries that will generate strong
signal strength, which is also demonstrated to have a relative
lower SNR than that of the forehead or cheek ROI [41].
Therefore, three ROIs, including the forehead ROI, the whole
cheek ROI, and the chin ROI, are determined.

The well-known Viola–Jones face detection algorithm [44]
is adopted to detect the facial rectangle, with the length l and
the width d . Fig. 2 shows the localizations of both facial ROI
subregions and background ROI. The ROI of the cheek area
is a rectangle, with the size of 0.5d × 0.2l, and the center of
the rectangle is the same as that of the facial rectangle. The
ROIs of forehead and chin are both 10×10 pixel squares, and
the center of squares is located upstraight and downstraight
that of the facial rectangle, respectively. In order to compare
with the following Seg-ICA [45], a background ROI should
also be determined, shown as the blue rectangle in Fig. 2,
with the size of 0.2d ×0.8l. Then, the Kanade–Lucas–Tomasi
(KLT) algorithm [46], a standard facial tracker, is employed
to detect the corners inside the ROIs for subsequent video
frames. This ensures an accurate and fast ROI detection,
which also helps to compensate for the interference of motion
artifacts. Afterward, the pixels within each ROI are averaged
frame by frame and the single-channel signal is formed.
In total, three single-channel time sequences corresponding to
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Fig. 1. Overview of the proposed DCT-JBSS framework to measure HR for NIR videos.

Fig. 2. Illustration of determined facial ROIs and background ROI.

facial ROIs are generated and a single-channel time sequence
corresponding to background ROI is also generated.

Before using DCT, the generated three single-channel time
sequences are first to be normalized to have zero means and
unit variances [34]. Then, a detrending filter [47] is utilized
to eliminate the slow linear or more complex trends. The
smoothness parameter was experimentally set as 1000 to get
a good performance.

B. Delay-Coordinate Transformation

The cardiovascular system is a nonlinear and dynamic in
nature. The dynamics of the system are similar to those of
other deterministic systems showing chaotic properties, which
have irregular periodicity as well as an exquisite sensitivity to

the initial conditions [48]. DCT, usually referring to time-delay
embedding theorem, is proposed to describe nonlinear dynam-
ics of a deterministic system showing chaotic properties or
similar dynamics of a cardiovascular autonomic system. James
and Lowe [49] demonstrated that an appropriate embedding
matrix, constructed out of a series of delay vectors from the
measured EEG signal, contained the information of artifact
components, seizure components, theta band, and so on, which
can later be deconstructed by applying ICA to this embedding
matrix. Aston et al. [50] proposed a U.S. patent that periodic
(periodic, pseudoperiodic, or approximate-periodic) data, such
as physiological data, can be analyzed by obtaining a vector
of delay coordinates for each one of a plurality of samples of
the periodic data in a time window.

With the help of the sliding window technique, several
sequences beginning with different time stamps are employed
to form an embedding matrix, the state space of which
is equivalent to that of the original (unobservable) signal,
containing all the dynamic variables. The single-channel sig-
nal derived from the kth facial ROI is marked as A[k] =
[a[k]

1 , a[k]
2 , . . . , a[k]

n , . . . , a[k]
N ], where a[k]

n is the mean pixel
value within the k-th facial ROI for the nth frame and N is the
total number of the single NIR signal. The lag/delay version
through DCT is denoted as

A[k][n] ≡ [
a[k]

n , a[k]
n+τ , a[k]

n+2τ . . . , a[k]
n+(m−1)τ

]
(1)

where m is the embedding dimension and τ is the time delay.
The value of (Q + m − 1)τ should be integer and is not larger
than N − 1. If τ is set as one sample point, (Q + m − 1)
equals to N − 1. Consequently, the embedding matrix can be

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 19,2021 at 08:34:39 UTC from IEEE Xplore.  Restrictions apply. 



5005313 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

constructed by a number of consecutive delay vectors as

X [k] =

⎡
⎢⎢⎢⎢⎣

a[k]
1 a[k]

1+τ · · · a[k]
1+Qτ

a[k]
1+τ a[k]

1+2τ · · · a[k]
1+(Q+1)τ

...
...

...

a[k]
1+(m−1)τ a[k]

1+mτ · · · a[k]
1+(Q+m−1)τ

⎤
⎥⎥⎥⎥⎦ (2)

which contains the pulsatile information in a mixed form that
can be demixed by BSS technique, and the underlying HR
source can be uncovered.

In practice, the number of delay vectors Q is determined by
the length of the observed signal N . With the help of DCT,
the multichannel signal of the kth facial ROI, treated as a
separate signal set, can be constructed, marked as X [k] .

According to the mathematical model of iPPG, the skin
color signal can be treated as a linear combination of the
time-varying intensity signal, the varying specular reflection
signal, and the pulsatile signal [5]. Most of the previous
BSS-based studies demonstrated that the three-channel sig-
nal is enough to extract the HR source. Zhao et al. [8]
already proved that when embedding the single green-channel
to 3-D embedding matrix, the HR can be well evaluated.
Besides, Buzug and Pfister [51] demonstrated that since the
reconstruction is an embedding, i.e., there is a topological
mapping from the original phase space to the embedding
space, the embedding dimension has to be m ≥ 2n + 1 (n is
the dimension of the flow in the original space). In this study,
n is equal to 1 (the single-channel NIR signal), and m can set
to 3. In addition, we evaluated the performance metrics varying
with different dimensions of m. Experimental results showed
that when m was set as 3, the performance was really good.
Thereby, m was set as 3 in this study. Besides, the frame rate of
the proposed NIR videos from the public database is not larger
than 30 frames per second (fps). To ensure the performance
of HR measurement, each time point (without downsampling)
should be included so that τ was set as 1.

C. Joint Blind Source Separation

The common pulsatile sources existing in all ROI signal sets
will be extracted by utilizing JBSS. JBSS aims to separate the
underlying sources commonly existing in each signal set while
keeping a consistent order of the extracted sources across
multiple signal sets. We first describe the extraction of pulsatile
sources via JBSS.

Given K signal sets (here K ≥ 2), with each containing P
(here, P is equal to m) channels and Q+1 samples, the kth
signal set X [k] can be expressed by its corresponding column
vectors as

X [k] = [
x [k]

(1), x [k]
(2), . . . , x [k]

(q), . . . , x [k]
(Q+1)

]
, 1 ≤ k ≤ K (3)

where x [k]
(q) is the qth realization of the column vector X [k] with

the size of P ×1. Each signal set is treated as a linear mixture
of L underlying independent sources

X [k] = B[k]S[k], 1 ≤ k ≤ K (4)

where B[k]’s are mixing matrices and S[k]’s are underlying
source matrices. S[k] can be expressed by its corresponding

vectors S[k] = [s[k]
1 , s[k]

2 , . . . , s[k]
L ]T , where the superscript T

denotes the transpose operation.
In the JBSS framework, source component vector (SCV) has

been defined across multiple signal sets [52], The lth SCV is a
random vector independent of all other SCVs and the compo-
nents within each SCV are dependent. JBSS aims to identify
the aforementioned SCVs by finding the mixing matrices B[k]’s
or the demixing matrices W [k]’s and the corresponding source
vector estimates y[k] = W [k] X [k] . The estimate of the lth SCV
is given as yl = [y[1]

l , y[2]
l , . . . , y[k]

l , . . . , y[K ]
l ]T . Here, y[k]

l is
the estimation of the lth component in the kth signal set given
by yl

[k] = (w[k]
l )T X [k] , where (w[k]

l )T is the lth row of W [k] .
The goal of IVA is to identify the L independent SCV

from K signal sets, which can be achieved by minimizing
the mutual Information II V A among the estimated SCVs as

II V A
�= I [y1; y2; . . . ; yL] =

L∑
l=1

H [yl] − H [y1,y2, . . . , yL ]

=
L∑

l=1

H [yl] − H [W [1]X [1], . . . , W [K ] X [K ]]

=
L∑

l=1

(
K∑

k=1

H [y[k]
l ] − I [yl]

)
−

K∑
k=1

log |det(W [k])| − C1

(5)

where H [·] indicates the entropy and C1 is the constant
term H [X [1], X [2], . . . , X [K ]]. The final representation shows
that minimizing the cost function of IVA is equivalent to
simultaneously minimizing the entropy of all components and
maximizing the mutual information within each estimated
SCV. Consequently, each estimated SCV is independent of
all other estimated SCVs, while the components within each
SCV are dependent on each other. IVA can ultimately solve
permutation ambiguity when applying BSS techniques to
multiple signal sets.

The most widely used specific distributions of IVA are
Laplace distribution and Gaussian distribution, with the corre-
sponding implementation algorithms called IVA-L and IVA-G.
IVA-L assumes that each SCV follows a multivariate Laplace
distribution (i.e., isotropic and without second-order correla-
tion), whereas IVA-G exploits the linear dependencies across
multiple signal sets by supposing that each SCV follows a
multivariate Gaussian distribution. For most neurophysiologi-
cal applications, a second-order dependence across signal sets
may be optimal [16]. In this article, the IVA-G was employed
to implement the JBSS framework. Due to the fact that the
most dependent information among all the three facial ROIs
is the pulsatile information, it is anticipated that the sources
included in the first order of SCV should be selected as the
HR source.

D. HR Estimation

After JBSS, the first order of recovered SCVs containing
three sources (with each corresponding to one signal set),
termed SCV1, will be bandpass filtered [fourth-order Butter-
worth filter, with the lower cutoff at 0.70 Hz (42 bpm) and
the upper cutoff at 2.5 Hz (150 bpm)] and treated as the HR
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Fig. 3. Flowchart of the DCT-JBSS-M algorithm.

source candidates. Then, the PSD distribution of each HR
source candidate is calculated with FFT, where the dominant
frequency is determined as fmax. The final HR measurement
is calculated as 60 × fmax bpm.

When dealing with the final HR measurements,
Niu et al. [53] proposed to model the temporal relationship
of neighboring HR rhythms via HR distribution to improve
the performance of the succeeding HR estimations. In our
study, there may exist common noises in different ROIs due
to contaminated motion artifacts, and the pulsatile signal
may appear in other sources with lower SNR in SCV1 or
other orders of SCVs rather than SCV1. To solve this
problem, we develop a modified DCT-JBSS framework,
termed DCT-JBSS-M to modify the HR measurements. The
HR continuity from all the subtime-duration (20 s) segments
is utilized to get rid of the HR outliers of the 30-s duration
segment. The DCT-JBSS-M framework includes two main
steps. The first step is to derive the most probable HR of the
30-s segment, represented by the mean HR value (HR20Mean)
of all the HR candidates derived from 20-s duration segments.
The second step is to select the most appropriate HR from
all the recovered SCVs according to HR20Mean. The detailed
flowchart is shown in Fig. 3.

Specifically, during Step One, a 30-s duration segment is
first divided into 11 20-s duration consecutive segments with
1-s sliding step, which means that there is 19-s overlapping
between every two adjacent segments. Therefore, the HRs of
these 11 video segments have a certain continuity and small
variations, due to the fact that there is a refractory period
for an excitable cardiac muscle membrane to be ready for
a second stimulus. For each 20-s duration segment, the original
DCT-JBSS approach is adopted to measure the HR. Then,
a threshold of HR variation during 1 s HRTh is set to identify
HR candidates. HRn will be identified as the HR candidate if
the number (K ) of the absolute error (not larger than HRTh)

between HRn derived from current nth 20-s duration segment
and the other ten 20-s duration HRs is not smaller than NTh.
After all the HR candidates are determined, the mean of these
HR candidates HR20Mean is calculated.

During Step Two, HR30 is calculated from the current
30-s duration segment by DCT-JBSS and may be modified
based on the previously obtained HR20Mean. If the absolute
error HRError between HR30 and its HR20Mean is not larger
than the threshold HRTh, the original HR30 will be retained.
Otherwise, HR30 corresponding to SCV2 and even SCV3 will
be calculated and also compared with HR20Mean, until the
absolute error is not larger than HRTh. In this case, the new
HR30 will be determined as the target HR. However, if no
HR candidate is derived or none of HR30 can satisfy the
criterion, the original HR30 derived by DCT-JBSS will be
retained. In this article, HRTh was set as 7 bpm, whereas NTh

was set as 5.

IV. EXPERIMENTS

A. Experimental Setup

To verify the performance of HR measurement based
on our proposed method, two public databases, the ULg
Multimodality Drowsiness Database (also called DROZY)
and MERL-Rice NIR Pulse Data set (MR-NIRP), are
employed [54]. DROZY provides multiple modalities of data
(contact HR reference and NIR videos) to tackle the design
of drowsiness monitoring systems and related experiments.
Fourteen healthy subjects (11 females and 3 males), aged
22.7 ± 2.3 [mean ± standard deviation (SD)] years old,
participated in the data collection. Each subject took three
psychomotor vigilance tests (PVTs) over two consecutive
days, under conditions of increasing sleep deprivation induced
by acute and prolonged waking. The PVTs were all performed
in a quiet, isolated laboratory environment, and the room lights
were turned off for PVT2 and PVT3. The database contains
fully synchronized raw data, including PSG signal, and NIR
facial videos. The NIR facial videos were recorded in the
MP4 format (compressed videos) using the Microsoft Kinect
v2 sensor, with 830-nm active infrared illuminance. The pixel
resolution of NIR videos was 512 × 424. ECG was included
in the PSG signal and sampled at 512 Hz, which was the HR
reference in our study. There exist some motions such as body
swerve and mouth coverage with hands due to drowsiness or
sleep. The total number of the NIR videos was 36, and 20 of
them were recorded at 30 fps, whereas the rest 16 ones were
recorded at 15 fps. However, due to the blurred ECG signal,
video 2-1 was excluded, resulting in 19 videos with 30 fps.
Each NIR video has a duration of about 10 min, and the first
570 s were utilized for HR analysis. The processing window
was set as 30 s, and 19 nonoverlapping segments for each
video were obtained. Consequently, 361 video segments with
30 fps were derived, whereas 298 video segments with 15 fps
were generated.

MR-NIRP database [25] contains both RGB videos and
narrowband NIR videos. Eight healthy subjects (two females
and six males), aged 20–40 years old, with varying skin tones
(four Indians, three Caucasians, and one Asian), participated
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Fig. 4. Taking the fourth segment of the Video 13-2 for instance, the illustration of both the temporal and spectral (PSD) characteristics of the target HR
source, the HR reference waveform, and the filtered single-channel signal. (a) Temporal characteristic. (b) Spectral characteristic.

in the data collection. The videos were recorded in an indoor
environment, and all subjects were asked to sit still but allowed
for natural head motion. The monochrome camera, Point Grey
Grasshopper GS3-U3-41C6NIR-C, fitted with a narrowband
940-nm bandpass filter with a 10-nm passband, was used to
record NIR images. The raw 10-bit images were recorded with
640 × 640 resolution at 30 fps, and each video lasted about
3 min. A Contec CMS50D+ finger pulse oximeter was used
to obtain a reference PPG waveform recorded at 60 fps. The
processing window was also set as 30 s without overlapping,
resulting in 51 segments in total.

B. HR Estimation Results and Discussion

To demonstrate the feasibility of our proposed method
for remote HR measurement for NIR videos, the same five
quality metrics as [55] were employed. Specifically, the MAE
HRmae, the SD HRsd, the RMSE HRrmse, the mean error rate
percentage HRmer, and the Pearson’s correlation coefficient
(CC) r . The SD HRsd is defined as

HRsd =
⎛
⎝

√√√√1

n

n∑
i=1

(HR(i)
e − HRe)2

⎞
⎠ (6)

where HRe = HRpredict − HRlabel is the error of HR and HRe

indicates the mean value of HRe. Besides, the percentage of
the HR error HRe is less than 3 or 5 bpm is employed in %,
termed PTE3 or PTE5.

On the one hand, although motion-based methods could also
achieve a satisfactory performance of HR measurement for
NIR videos [24], they usually need at least two IR cameras
with different wavelengths. In this article, we only adopted a
single NIR camera and excluded these excellent motion-based
methods for comparison. On the other hand, we adopted the
same public MR-NIRP database to evaluate our proposed
DCT-JBSS method, and the baseline SparsePPG method [25]
was not reimplemented, but the same performance metrics
were compared and discussed. Considering all these factors,
five typical iPPG methods, most related to the BSS techniques
or the single-channel signal processing strategies, namely,
SCF (single channel filtering) [27], [28], EEMD [30], [56],

SCICA [8], MRICA (multiregion ICA) [9], and Seg-ICA (seg-
mented ICA) [45], were also implemented on the DROZY and
MR-NIRP databases for comparison. For MRICA, the selected
three ROIs were the same as our proposed approach. For SCF,
EEMD, SCICA, and Seg-ICA, the single-channel signal was
generated from the spatial averaging within all the three facial
ROIs. For our proposed DCT-JBSS method, the results without
and with modification were both recorded.

In our experiment, three orders of SCVs in total were
recovered from the three ROI signal sets. Each order of
SCV contained three sources, with each corresponding to
one signal set. Taking the fourth segment of Video 13-2 for
instance, the CC between every two sources from the same
order is calculated. The minimum CC of SCV1 is 0.36,
whereas the maximum CC can reach 0.73. The minimum CC
of SCV2 is only 0.01, whereas the maximum CC is 0.29.
As for SCV3, the minimum CC is 0.03, whereas the maximum
CC is 0.05. It is proved that the commonly shared source
among all the three facial ROIs orders the first and contains
the pulsatile information. Besides, through the DCT-JBSS,
both the temporal and spectral (PSD) characteristics of the
target HR source match those of the HR reference waveform
better than the original single-channel signal. The results are
shown in Fig. 4, with Fig. 4(a) and (b) corresponding to the
temporal and spectral characteristics, respectively. The peaks
of the target HR source recovered by DCT-JBSS match well
and are more prominent than those recovered by the SCF
method. The dominant frequencies of the three sources in
SCV1 are 1.23, 0.81, and 1.02 Hz, with corresponding SNRs
−6.50, −5.81, and −1.58 dB, respectively. By the proposed
DCT-JBSS, the target frequency having the largest SNR is
determined as 1.02 Hz, whereas the dominant frequency of
the HR reference signal is 1.01 Hz. However, when adopting
the SCF method, the target frequency is only 0.79 Hz, less
accurate compared with that of the HR reference signal.

For all the 361 segments from DROZY with 30 fps, the per-
centage of which order the SCV was selected to serve as the
target HR source was calculated. The percentage of the target
HR source selected from SCV1 is 82.27% (297/361), the per-
centage of the target HR source selected from SCV2 is 14.14%
(51/361), and the percentage of the target HR source selected
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TABLE I

PERFORMANCE COMPARISON ON THE DROZY DATABASE
USING DIFFERENT IPPG METHODS (30 fps)

from SCV3 is only 3.60% (13/361). These results have also
proved our assumption that the most relevant pulsatile sources
can be extracted from the first order of SCV recovered by our
proposed DCT-JBSS approach.

Meanwhile, the performance comparison on the DROZY
database by applying different iPPG methods for NIR-videos
with 30 fps is shown in Table I. It can be seen from Table I
that our proposed DCT-JBSS achieves the best performance
in terms of all the six quality metrics compared with other
five iPPG methods. The MAE HRmae is 5.46 bpm, the SD of
HR errors HRsd is 7.29 bpm, the RMSE HRrmse is 9.10 bpm,
the mean error rate percentage HRmer is 8.73%, the Pearson’s
CC r is 0.72, and the percentage of HR error within 5 bpm
PTE5 is 67.31%. It can also be seen from Table I that
the performance of HR measurement based on SCICA is
comparable to that based on SCF. The performance of HR
measurement based on MRICA is somewhat better than that
based on SCF and SCICA. However, the performance of
HR measurement can be significantly improved when com-
bining JBSS with DCT. The metric comparison between the
SCICA and the MRICA demonstrates that the quality of the
pulsatile information underlying the multiple facial ROIs is
better than that of the multichannel signal constructed by
applying DCT to the single-channel signal from one single
facial ROI. This is also the direct motivation to propose
our DCT-JBSS approach. It can be seen from Table I that
the proposed DCT-JBSS-M can achieve a further improve-
ment than the original DCT-JBSS. The MAE HRmae is only
3.25 bpm, the SD HRsd is 4.06 bpm, the RMSE HRrmse is
5.20 bpm, the mean error rate percentage HRmer is 5.20%,
the Pearson’s CC r increases to 0.90, and the PTE5 achieves
an improvement of 13.85%, which indicated that when there
exist severe motions, our proposed DCT-JBSS methods will
also be challenged. The performance can be improved by the
DCT-JBSS-M method, considering the property that the pulse
cannot dramatically change within a very short time.

The performance comparison on the other MR-NIRP data-
base using all the abovementioned iPPG methods is shown
in Table II. It can also be concluded that our proposed
DCT-JBSS achieves the best performance in terms of all
quality metrics. Since the videos of MR-NIRP database were
acquired during indoor environment when the subjects kept

TABLE II

PERFORMANCE COMPARISON ON THE MR-NIRP DATABASE
USING DIFFERENT IPPG METHODS

still, the motion interference was much slighter than that in
the DROZY database. PTE5 derived by DCT-JBSS on the
MR-NIPR database is 22.89% higher than that on the DROZY
database. Besides, since the largest HR error is not larger
than 7 bpm, the advanced DCT-JBSS-M will not work and
will be omitted from this database. It can also be found from
Table II that PTE5 derived by the SCF is the same as that
by DCT-JBSS, whereas PTE5 derived by EEMD, SCICA,
or MRICA is at most 5.89% lower, which demonstrates that
these iPPG methods work well under stationary situations.
We all calculated PTE3 (the HR error within 3 bpm) for all the
methods, and our DCT-JBSS can achieve PTE3 with 86.27%,
while SCF, EEMD, SCICA, and MRICA can achieve 80.39%,
76.47%, 78.43%, and 78.43%, respectively. Both PTE5 and
PTE3 derived by Seg-ICA are much lower than the other
five methods, which shows that the Seg-ICA cannot tackle the
motion artifacts. This can be explained that the employment
of the background ROI is more suitable for illumination
variation elimination [45]. Similar conclusions can also be
drawn on this database that under relatively static situations,
our proposed DCT-JBSS method can reduce the RMSE HRrmse

to 2.56 bpm, whereas the SparsePPG method is 1.06 bpm. The
percentage of the HR error within 5 bpm PTE5 is 90.20%, and
PTE6 is 92.16%, whereas PTE6 of the SparsePPG method is
95.18% [25]. Until now, the SparsePPG method has achieved
the best performance of HR measurement on the MR-NIRP
database. The comparison between DCT-JBSS and SparsePPG
demonstrates that the performance of our DCT-JBSS is quite
competitive.

Fig. 5 shows the Bland–Altman analysis [57] between each
iPPG method (except Seg-ICA) and the HR reference for
DROZY database with 30 fps. From Fig. 5(a)–(d), the esti-
mated HRs based on SCF, EEMD, SCICA, and MRICA
are compared to their corresponding HR references, whereas
Fig. 5(e) and (f) shows the agreement between the proposed
DCT-JBSS and the HR references, as well as between the
modified DCT-JBSS-M approach and the HR references. Fig. 5
shows that by SCF, EEMD, SCICA, and MRICA methods,
the corresponding 1.96 times SD is at least 20.0 bpm, and
the maximum can reach 24.7 bpm. However, by our proposed
DCT-JBSS, the 1.96 times SD can decrease to 16.9 bpm.
Besides, by the modified version, the 1.96 times SD can further
decrease to 9.9 bpm. The smallest mean bias 1.3 bpm can be
achieved by the DCT-JBSS-M approach.
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Fig. 5. Bland–Altman plots analyzing the agreement of HR estimation
between ECG and each iPPG method (30 fps). (a) SCF. (b) EEMD. (c) SCICA.
(d) MRICA. (e) DCT-JBSS. (f) DCT-JBSS-M.

Fig. 6 shows the scatter plots for HR measurements on the
DROZY database with 30 fps using different iPPG methods
(except Seg-ICA), with Fig. 6(a)–(f) corresponding to SCF,
EEMD, SCICA, MRICA, the proposed DCT-JBSS, and the
DCT-JBSS-M, respectively. It can be seen from Fig. 6 that a lot
of inaccurate HR estimations have been obtained by the first
five aforementioned methods. The accuracy is improved by our
proposed DCT-JBSS method, which can be seen in Fig. 6(e)
that the HR measurements are much more concentrated around
the baseline y = x , showing a stronger correlation. When
adopting the modified version, the inaccurate outliers can
further be rectified and the correlation can be enhanced. Table I
and Figs. 5 and 6 show the significant improvement of our
proposed DCT-JBSS and the modified version DCT-JBSS-M.

1) Comparison Between DCT-JBSS and DCT-JBSS-M:
Fig. 7 shows the HR error distributions derived from both the
proposed DCT-JBSS and the modified version DCT-JBSS-M
on the DROZY database with 30 fps. It can be seen that by
the proposed DCT-JBSS approach, the HR errors range from
−37 to 15 bpm, whereas the modified version DCT-JBSS-M
can shrink the range from −27 to 9 bpm. Besides, by the
proposed DCT-JBSS, the percentage of the absolute HR error
within 5 bpm is 67.31% (243/361), which can be improved to
81.16% (293/361) when adopting DCT-JBSS-M.

Furthermore, for cases that the absolute HR errors were
less than 5 bpm (81.16%, 293/361), the selected orders
of SCV treated as the target HR source were analyzed.

Fig. 6. Scatter plots for HR measurements on the DROZY database using
different iPPG methods (30 fps). (a) SCF. (b) EEMD. (c) SCICA. (d) MRICA.
(e) DCT-JBSS. (f) DCT-JBSS-M.

The analysis demonstrates that among these 293 segments,
only ten out of them were not selected from SCV1. This
proves the assumption of our proposed DCT-JBSS that the
first order of SCV is prone to contain pulsatile information for
NIR videos during relatively static situations. The conclusion
can hold that the performance of HR measurement on the
MR-NIRP database is much better than that on the DROZY
database. The probable reason is that the movement interfer-
ence involuntary caused by drowsiness on DROZY is more
distinct than that under static situations on MR-NIRP. When
evaluated on the MR-NIRP database, the maximum HR error
was not larger than 7 bpm, where the advanced DCT-JBSS-M
would not be employed.

Fig. 8 shows the HR measurements for DROZY database
with 30 fps based on the DCT-JBSS-M approach, where each
of the 19 segments corresponds to a single video. It can be
seen from Fig. 8 that the overall HR errors of each video
are different. Specifically, the HR errors of Video 6-1 (HRmae

6.63 bpm), 9-3 (HRmae 5.84 bpm), and 11-2 (HRmae 5.11 bpm)
are significantly larger than the overall error of all the videos
(HRmae 3.25 bpm) when adopting DCT-JBSS-M. We further
observed these three videos and found that in some clips,
the head movements of the subject were large or the ROI
was obscured by his/her hand. It indicates that our proposed
approach will be challenged by strong motion artifacts or other
complex situations, which will be the direction of our future
work.
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Fig. 7. HR error distributions derived from both DCT-JBSS and DCT-JBSS-M on the DROZY database with 30 fps.

Fig. 8. HR measurements based on DCT-JBSS-M.

2) Influence of the Frame Rate: Besides the adopted 19 NIR
videos from DROZY recorded at 30 fps, there are 16 NIR
videos from DROZY recorded at 15 fps and can be divided
into totally 298 segments. In the experiment, we also eval-
uated the performance of HR measurement for 15-fps NIR
videos from the DROZY database by applying the proposed
DCT-JBSS and DCT-JBSS-M methods. The performance was
also compared with the aforementioned five methods. The
comparison results are shown in Table III, demonstrating that
our proposed DCT-JBSS-M also achieves the best performance
in terms of all quality metrics. The MAE HRmae is 5.27 bpm,
the SD HRsd is 6.60 bpm, the RMSE HRrmse is 8.44 bpm,
the mean error rate percentage HRmer is 7.12%, and the Pear-
son’s CC r is 0.67. When comparing Table I with Table III,
the overall performance decreases a bit for NIR videos with
15 fps. The probable reason is that signal length has an
influence on the quality of the independent sources extracted
from BSS methods. We believe that when the frame rate of
NIR videos is much higher, the reduced frame rate will have
little impact on the performance of HR measurement. Such a
conclusion is in accordance with the findings in [12] and [58]
that when the frame rate decreased from 120 to 30 fps, little
observable difference was observed in terms of MAE or error
distributions.

TABLE III

PERFORMANCE COMPARISON ON THE DROZY DATABASE

USING DIFFERENT IPPG METHODS (15 fps)

It should be noticed that when there are common rigid
motions that affect the dominant frequency of HR after per-
forming DCT-JBSS, the motion-elimination procedure should
be added before DCT-JBSS. This is in accordance with the
finding that the spatial input of the (J)BSS techniques is
advantageous and the outcome of the (J)BSS techniques is
strongly dependent on the input quality [37]. Previous study
based on DIScriminative signature-based extraction (DIS) [59]
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method has made a great contribution to rPPG measurement
using NIR cameras, with the aim of widening the application
scope to dark situations while having a comparative perfor-
mance in presence of motions. A positive assumption can be
made that the combination of DIS and DCT-JBSS will promote
the performance of HR measurement from multispectral and
multiROI NIR videos. Besides, with the help of characterizing
the motion trajectory via tracking facial landmarks, the motion
can first be extracted and eliminated from facial ROIs to
improve the performance of HR measurement. As for illu-
mination variations, the background ROI can be utilized to
extract the underlying illumination variation source, such as
Seg-ICA [45] or JBSS-EEMD algorithms, and then eliminate
this interference source from facial ROIs. This is the future
direction of our study under realistic situations.

V. CONCLUSION

In this article, we proposed a novel noncontact HR mea-
surement method based on JBSS with DCT for NIR videos.
First, a separate multichannel signal set was generated by
applying DCT to the single-channel signal from each facial
ROI. Second, with the help of JBSS that is designed to
handle multiple signal sets simultaneously, the underlying
pulsatile information commonly shared among different facial
ROIs was extracted. The combination of JBSS and DCT can
significantly improve the performance of HR measurement for
NIR videos under relatively static situations. Other five typical
iPPG methods, including SCF, EEMD, SCICA, MRICA, and
Seg-ICA, were also employed for comparison on two publicly
available DROZY and MR-NIRP databases. The experimental
results demonstrated the feasibility of our proposed DCT-JBSS
framework. This study will widen the iPPG application during
dark situations. In the future, the work focusing on HR
measurements in a more challenging situation, including both
motion artifacts and illumination variations, such as in-car
environment, will be implemented.
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