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Abstract—Remote photoplethysmography (rPPG) is a non-
contact technique for measuring cardiac signals from facial
videos. High-quality rPPG pulse signals are urgently demanded
in many fields, such as health monitoring and emotion recogni-
tion. However, most of the existing rPPG methods can only be
used to get average heart rate (HR) values due to the limitation
of inaccurate pulse signals. In this paper, a new framework
based on generative adversarial network, called PulseGAN, is
introduced to generate realistic rPPG pulse signals through
denoising the chrominance (CHROM) signals. Considering that
the cardiac signal is quasi-periodic and has apparent time-
frequency characteristics, the error losses defined in time and
spectrum domains are both employed with the adversarial loss
to enforce the model generating accurate pulse waveforms as
its reference. The proposed framework is tested on three public
databases. The results show that the PulseGAN framework can
effectively improve the waveform quality, thereby enhancing the
accuracy of HR, the interbeat interval (IBI) and the related
heart rate variability (HRV) features. The proposed method
significantly improves the quality of waveforms compared to
the input CHROM signals, with the mean absolute error of
AVNN (the average of all normal-to-normal intervals) reduced by
41.19%, 40.45%, 41.63%, and the mean absolute error of SDNN
(the standard deviation of all NN intervals) reduced by 37.53%,
44.29%, 58.41%, in the cross-database test on the UBFC-RPPG,
PURE, and MAHNOB-HCI databases, respectively. This frame-
work can be easily integrated with other existing rPPG methods
to further improve the quality of waveforms, thereby obtaining
more reliable IBI features and extending the application scope
of rPPG techniques.

Index Terms—Heart rate estimation, remote photoplethysmog-
raphy, generative adversarial network, pulse waveform, heart
rate variability

I. INTRODUCTION

CARDIAC signal is an important physiological signal to
monitor the human body’s health and emotional sta-

tus. The common ways for obtaining cardiac signals include
electrocardiogram (ECG) and photoplethysmography (PPG).
Both of them rely on specific sensors to contact with skins
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of subjects, which may be uncomfortable or unsuitable for
people with sensitive skins [1]. In recent years, there is a trend
to develop non-contact heart rate measurements through the
microwave Doppler or computer vision techniques. The remote
photoplethysmography (rPPG) [2] is a kind of computer vision
based technique to record color changes of facial skins caused
by corresponding heartbeats using consumer-level cameras.

After years of development, a variety of rPPG methods
have been introduced according to different assumptions and
mechanisms [3], [4]. For example, blind source separation
(BSS) [5] based methods are proposed under some specific
statistical assumption, while the model-based rPPG methods
[6], [7] are derived from a skin optical reflection model. In
addition, there are some other methods to achieve heart rate
extraction through signal filtering [8], [9]. These conventional
methods usually perform well when their model assumptions
are met. However, in the actual environment with diverse types
of noise, it is likely that the underlying assumptions of the
original method are not fully met, which greatly decreases the
performance of the method and leads to low quality of extract-
ed waveforms. Therefore, conventional methods usually only
aim to obtain average heart rate (HR) values by calculating
the dominate frequency of the rPPG pulses [10], [11].

However, there is a growing demand to calculate more
diverse cardiac features in rPPG applications, such as stress
detection, emotional classification, and health monitoring, etc,
where high-quality waveforms are critical. For example, HRV
is the variation of HR cycles. It is a valuable predictor of
sudden cardiac death and arrhythmic events. The spectral
component of HRV can also reflect the activities of the
parasympathetic and sympathetic nervous systems. Currently,
these diverse cardiac features can usually be obtained from
high-quality pulse waveforms measured by contact ECG or
PPG. They usually require electrodes or sensors to be in con-
tact with the human body, and thereby limiting the application
scopes. Therefore, it is urgent to develop new rPPG technology
which can extract accurate pulse waveform for calculating
more physiological characteristics.

On the other hand, inspired by the rapid development of
deep learning (DL) techniques, DL-based rPPG algorithms
have also been proposed in recent years. The rPPG approaches
based on DL can be generally divided into two types, the
end-to-end type and the feature-decoder type. The former
ones directly establish the mapping from video frames to
the target HR values or pulse signals, while the latter ones
get the HR targets through decoding the latent information
preprocessed from video frames. Since DL is data-driven and
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neural networks have strong fitting capabilities, the results of
DL-based rPPG methods often outperform the conventional
ones as demonstrated in [12], which inspires us to extract rPPG
pulse waveforms under a DL framework.

The extraction of rPPG pulse waveforms can be considered
as a generative problem from the perspective of generative
models. Since firstly proposed by Ian in 2014, generative
adversarial networks (GAN) [13] has become the mainstream
generative method due to its state-of-the-art performance,
especially in image processing and computer vision areas. The
GAN is consisted of two neural networks, the generator G
and the discriminator D. The two networks are trained in
an adversarial way, where G generates a fake target signal
to confuse the discriminator, and D makes judgments on the
generated signals from the real ones, thereby prompting the
results of G to be closer to the references. With the rapid
development of GAN, it has also been applied to denoise
one-dimensional signals, such as speech signals [14], [15],
and ECG signals [16]. These studies enlighten us to acquire
reliable rPPG waveforms using GAN models.

In this paper, we propose a new framework, named as
PulseGAN, to extract rPPG pulse signal with a conditional
GAN (cGAN) [17]. The rough pulse signal derived from
CHROM method [6] is taken as the input of generator G, and
the PPG signal synchronously recorded by a pulse oximeter
is used as a reference. The discriminator D judges the gen-
erated signal from the reference one, where the rough input
of G is taken as a conditioning. Considering the apparent
characteristics of pulse signal, besides the adversarial loss, we
also combine the waveform error loss in the time domain and
the spectrum error loss in the frequency domain to enforce
a multi-level match between the generated waveform and its
reference. Through the adversarial training between G and
D, the generator learns to construct a rPPG pulse as close
as its ground truth. The proposed method is tested on public
databases in two scenarios, including both within- and cross-
database cases. The test results reveal that the PulseGAN
effectively improves the quality of input waveforms like the
signal-to-noise ratio (SNR), so that more cardiac features
including the interbeat interval (IBI) indexes, and the HRV
can be calculated more reliably.

In summary, the main contribution of this paper is that we
introduce a PulseGAN framework to extract realistic rPPG
pulse waveforms from rough input signals derived by some
conventional method. The high-quality waveform makes it
possible to further calculate reliable cardiac features like HRV,
which can potentially extend the application scopes of rPPG
techniques. The framework effectively combines the benefits
of conventional methods and GAN. The generator is enforced
to learn features of reference PPG signals through error losses
defined in both time and spectrum domains in addition to
the adversarial loss. The PulseGAN framework can also be
easily integrated with some existing rPPG methods to achieve
high-quality waveform reconstruction, thereby extending the
application scope of rPPG techniques.

II. RELATED WORK

In 2008, Verkruysse et al. [2] first verified the validity of
rPPG for HR estimation from facial videos. They demonstrated
that the green channel signal extracted from skin pixels con-
tained strong pulsating information. Since then, a variety of
rPPG methods have been proposed. Among them, the typical
ones include those methods based on blind source separation
(BSS) or the skin optical reflection model. The BSS method
assumes that the pulse signal is linearly mixed with other
noise signals, and all those signals satisfy some statistical
property. For example, Poh et al. [5] applied independent
component analysis (ICA) to separate the pulse signals from
the color RGB signals. Wei et al. [18] employed the second-
order blind source separation to extract the target signal
from six RGB channels obtained in two facial regions of
interest (ROIs). On the other hand, the methods based on the
optical reflection model extract pulse signal explicitly through
a combination of individual color channels are combined with
specific ratios. This is considered to eliminate the common
interference sources from the RGB channels. For example, De
Haan et al. [6] proposed a chrominance method (CHROM) to
calculate the pulse signal. The CHROM method eliminates
the specular reflection component with a projection and then
obtains the pulse through an ”alpha tuning”. In [7], Wang et
al. used a different projection plane orthogonal to skin color
(POS) for rPPG signal extraction. These conventional methods
have achieved excellent results in calculating the average HR
values of rPPG, during both laboratory and realistic scenarios.
However, the quality of the waveforms remains poor due to
noise interference and model limitations, which still has large
room for improvement.

In the last few years, DL techniques have been increasingly
used in rPPG extraction. Here we list some typical methods.
In 2018, Chen et al. [19] introduced an end-to-end system
to obtain HR and respiration rate. A convolutional neural
network (CNN) combined with an attention mechanism was
designed to establish the mapping between video frames and
the desired physiological information. In the same year, Špetlłk
et al. [20] put forward a two-step CNN composed by a feature
extractor and an HR estimator to estimate the HR from a series
of facial images. Niu et al. [21] proposed a spatiotemporal
representation of HR information and designed a general-to-
special transfer learning strategy to estimate HR from the
representation. Later, the authors also applied a channel and
spatial-temporal attention mechanism to further improve the
HR estimation from face videos [22]. Yu et al. [23] proposed
an end-to-end deep learning method to retrieve rPPG pulse
signals from videos in highly compressed formats. They also
explored the benefit of employing neural architecture search
to enhance the performance of end-to-end rPPG methods [24].
Song et al. [12] designed a feature-decoder framework to map
a novel spatiotemporal map to the corresponding HR value
through a CNN. They also took a transfer learning to reduce
the demand of training data and accelerate the convergence of
model.

The goal of above DL-based rPPG methods is to determine
accurate HR values. There are also some DL methods that
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Fig. 1. The framework of the proposed PulseGAN method. First, 68-point facial landmarks [26] are detected and a region of
interest (ROI) is defined. Subsequently, the RGB signals of ROI are extracted from the videos, and after filtering, etc., the
CHROM algorithm is used to obtain rough pulse signals. Finally, a high-quality pulse waveform is obtained through denoising
the rough CHROM signal with the PulseGAN, thereby calculating more accurate physiological parameters.

can directly generate pulse waveforms. For example, Bian et
al. [25] proposed a new regression model that used a two-
layer long short-term memory (LSTM) to filter the noisy rPPG
signals. Slapničar et al. [26] also employed a LSTM model to
enhance the rough rPPG signals obtained by the POS algorith-
m. In [27], Yu et al. introduced an end-to-end way to extract
pulse signal with deep spatial-temporal convolutional networks
from the original face sequences. Particularly, the authors also
calculate the HRV features to evaluate the quality of pulse
waveforms. Although these articles have made significant
progresses in extracting waveforms, we still need to consider
various factors that affect the generation of waveforms, such as
loss functions, the network structures, and the design of input
and output etc., to further improve the generated waveforms.

This paper aims to introduce a new framework for enhanc-
ing pulse waveform quality with cGAN. We will verify that
the proposed PulseGAN framework employing a combination
of the waveform loss, the spectrum loss, and the adversarial
loss outperforms the one with only a waveform loss on the
quality of waveform enhancement from coarse inputs.

III. METHOD

In this section, we introduce the details of the proposed
PulseGAN framework for cardiac pulse extraction. The overall
framework of PulseGAN is shown in Fig.1. First, 68-point
facial landmarks [28] are detected and a region of interest
(ROI) is defined according to those landmarks covering the
left and right cheeks. Second, the pixels within the selected
ROI are averaged to get the RGB channels, and the CHROM
algorithm is used to obtain a rough pulse signal that will be
taken as the input of PulseGAN. Finally, a high-quality pulse
waveform is obtained through denoising the rough CHROM
signal with the PulseGAN.

A. Acquisition of rough rPPG pulses

A rough rPPG pulse signal is obtained with some con-
ventional method before feeding into the PulseGAN. It can
significantly simplify the training difficulty of PulseGAN if
the rough rPPG pulse is close enough to its reference one. In

Generator
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real/fakeX

X
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Fig. 2. The conditional GAN structure used in PulseGAN.

this paper, the CHROM [6] proposed by De Haan et al. as
the candidate to extract the rough pulse signal. Theoretically,
other conventional methods can also be used. We choose the
CHROM method because it is fast and stable against motion
artifacts.

The principle of CHROM is based on the skin optical
reflection model [7]. The chrominance signals S1 and S2 are
defined based on a projection of standardized RGB signals to
remove the specular reflection terms. The rough pulse signal
X is then calculated through an alpha tuning technique as
X = S1,f −αS2,f , where α = σ (S1,f ) /σ (S2,f ), σ indicates
the standard deviation operation, and the S1,f and S2,f are
band-pass version of S1 and S2. To standardize all input
signals, the obtained CHROM signal is de-trended and then
normalized to a range of [0, 1].

B. The PulseGAN framework

The overall structure of the PulseGAN is as shown in
Fig.2. The PulseGAN is composed of a generator G and a
discriminator D. The generator G is taken to map the rough
CHROM signal X to a target rPPG signal G(X) that is
close to the reference PPG signal Xc. The discriminator D
is used to distinguish the ground truth Xc from the signals
G(X). To better pair the inputs and outputs, we refer to the
conditional GAN [17] approach, where the input X is set
as a condition in the discriminator. Therefore, the input of
the discriminator is composed of two channels as (G(X), X)
or (Xc, X). The discriminator D outputs a lower score for
the input (G(X), X), while it gives a higher score for the
input (Xc, X). The characteristics of the PPG signal are
continuously learned through an adversarial learning between
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Fig. 3. The network structure of PulseGAN. (a) The generator
network. (b) The discriminator network.

the generator and the discriminator, so that the output signal
has a distribution as close as that of the reference PPG signal.

The network structures of PulseGAN are designed with
reference to SEGAN [14]. The generator, as shown in Fig.3(a),
is similar as a denoising autoencoder with several skip con-
nections. As seen, both the encoder and the decoder have
six hidden layers, which are less than the ones in SEGAN.
Besides, we also remove the latent vector z in SEGAN. These
modifications can reduce the risk of overfitting in generating
the rPPG waveforms. In detail, the encoder is composed of
six one-dimensional convolution layers, while the decoder
has six deconvolution layers. The parametric rectified linear
units (PReLUs) and Tanh are taken as the nonlinear activation
functions. The skip connections are taken to transfer fine-
grained features from the encoder to its counterpart in the
decoder. This is important for the generator to construct high-
quality waveforms.

The discriminator is also a stack of several 1D convolutional
layers together with a fully connected layer in the last layer as
shown in Fig.3(b). The LeakyReLU is chosen as the nonlinear
activation function and batch normalization is employed to
accelerate the convergence. The input of D has two channels,
where the CHROM signal X is used as a condition. The
discriminator makes judgments on the generated waveform
(G(X), X) and its reference one (Xc, X), respectively. The
output value of D represents the probability that the discrim-
inator considers the input to be real data.

C. Loss function

The purpose of PulseGAN is to generate a waveform G(X)
from its input X . G(X) is expected to be as close as its
reference signal Xc. This is achieved through training the
PulseGAN with a lot of paired data. Since the pulse signal has

a clear time-domain and frequency-domain characteristics, we
define error losses in both domains to better guide the genera-
tor to learn the features of the reference signal. Therefore, we
define the loss function of the generator and discriminator as
follows:

LG =
1

2
(D(G(X), X)− 1)2 + λ ∥ Xc −G(X) ∥1 +

β ∥ Xcf −Gf (X) ∥1
(1)

and

LD =
1

2
(D(G(X), X))2 +

1

2
(D(Xc, X)− 1)2. (2)

The first term of LG is an adversarial loss similar as the
least square GAN (LSGAN) [29], the second and third ones
are the waveform loss and the spectrum loss defined in time
domain and frequency domain, respectively. The loss function
of discriminator remains the same as the LSGAN. It enforces
D to distinguish the generated and the reference signals. Here
the Gf (X) and Xcf in the spectrum loss are calculated as
the spectrums by a 1024-point fast Fourier transform (FFT)
on G(X) and Xc, respectively. And ∥ · ∥1 indicates the L1

norm. The λ and β are the weights of the waveform loss
and the spectrum loss, respectively. The generator is enforced
to learn the time-frequency characteristics through minimizing
the error losses. Therefore, the quality of generated waveforms
can be effectively improved.

IV. EXPERIMENTS

In this section, we will evaluate the proposed PulseGAN on
several public databases to illustrate its effectiveness. In detail,
the following experiments are conducted: 1) test on the UBFC-
RPPG database [30] in a within-database way; 2) test on the
UBFC-RPPG, PURE [10], and MAHNOB-HCI [31] databases
in a cross-database way; 3) evaluate the influence of different
loss functions through ablation study. The proposed method
is compared with several other methods using quality metrics
defined on the generated waveforms, such as the averaged HR,
HRV, IBI, and the SNR.

A. Experimental setup

The following five databases are involved in the experiment
including the UBFC-RPPG, the PURE, the VIPL-HR [32],
the MAHNOB-HCI, and the in-house BSIPL-RPPG databases.
All databases are comprised of facial videos and physiological
signals. Particularly, the reference physiological signals in
MAHNOB-HCI database are ECG signals, while the BVP
signals are provided in the other four databases. The HR
distribution of each database is shown in Fig.4. As can be seen,
the in-house BSIPL-RPPG, UBFC-RPPG and MAHNOB-HCI
databases have wider ranges of HR distributions compared to
that of the other two. The PURE database has a HR distribution
mainly concentrating at both ends, whereas most of the HR
values of the VIPL-HR database fall into the range from 50
to 80 bpm. That is because we have removed reference PPG
signals with poor quality in the VIPL-HR database to avoid
affecting the training of the network.
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Fig. 4. The HR distributions of reference PPG pulses in BSIPL-RPPG, PURE, UBFC-RPPG, VIPL-HR, and MAHNOB-HCI
databases, respectively.

Contec CMS50E

Logitech C920 pro HD

Fig. 5. Setup of the in-house BSIPL-RPPG database.

The proposed method is tested in two scenarios, the within-
database case and cross-database case. For the within-database
scenario, the UBFC-RPPG database is divided into training
set and testing set according to the principle of subject-
independent. For the cross-database scenario, the UBFC-
RPPG, PURE and MAHNOB-HCI databases are used as
the testing sets, respectively. According to characteristics of
testing data sets, different training sets are set up in the cross-
database scenario. Particularly, the in-house BSIPL-RPPG and
PURE databases are taken as the training set to test the UBFC-
RPPG database. The in-house BSIPL-RPPG and UBFC-RPPG
databases are taken as the training set to test the PURE
database. The VIPL-HR database is taken as the training set
to test the MAHNOB-HCI database.

We use a 10-second sliding window to process all videos
and physiological signals for both scenarios. However, the
sliding step in the within-database case is taken as 0.5 seconds,
while in the cross-database case, 0.5 seconds are set for gen-
erating training samples, and 1 second is used for generating
the testing samples. A smaller sliding step can help to increase
the number of training samples for the within-database case.
All reference physiological signals are resampled to be aligned
with the video frame rate.

We train the proposed PulseGAN for 30 epochs using the
Adam optimizer. The initial learning rate is set to 0.001,
and it is adaptively adjusted through a dynamic learning rate
scheduler, the ’ReduceLROnPlateau’ with the factor to 0.1 and
patience to 3.0. The weight parameters α and β in Eq. (1)
are both taken as 10.0 to balance the waveform and spectrum
losses.

B. Databases
The UBFC-RPPG database [30] includes 42 videos under

a realistic situation. The subjects were asked to play a time-

sensitive mathematical game in order to keep the HR varied.
The videos were recorded by a webcam (Logitech C920 HD
Pro) with a spatial resolution of 640× 480 pixels and a frame
rate of 30 fps. Each video is about 2 minutes long, and the
PPG pulse signals are collected simultaneously by the pulse
oximeter (Contec Medical CMS50E) with a 60 Hz sampling
rate.

The PURE database [10] contains 60 videos from 10
subjects (8 male and 2 female). Each subject performed six
different kinds of head motions, including steady, talking,
slow translation, fast translation, small rotation, and medium
rotation. Each video is about 1 minute long and recorded by
an ECO274CVGE camera with a resolution of 640 × 480
pixels and a frame rate of 30 fps. The PPG pulse signals are
also collected by the Contec CMS50E pulse oximeter while
recording each video.

The VIPL-HR database [32] contains 2378 visible light
videos and 752 near-infrared videos from 107 subjects (79
males and 28 females, the ages are between 22 and 41 years
old). Only visible light videos are used in the experiments. The
database contains 9 scenarios recorded by 3 different devices
(Logitech C310 web-camera, the front camera of HUAWEI P9
smartphone, and RealSense F200 camera). The frame rates of
the videos in VIPL-HR database from 25 fps to 30 fps, and
the resolution is 960 × 720 and 1920 × 1080. The ground-
truth physical signals were recorded using a pulse oximeter
(CONTEC CMS60C BVP sensor).

The MAHNOB-HCI database [31] consists of 527 videos
in total. 15 female and 12 male participants are involved with
ages varying between 19 to 40 years old. All videos are
recorded at 61 fps with 780 × 580. Only the ECG signals
are recorded but not the BVP signals.

The BSIPL-RPPG is an in-house rPPG database including
37 healthy student subjects (24 male and 13 female with age
ranging from 18 to 25 years old). The experimental setup is
illustrated in Fig.5. The subjects were asked to sit in front
of the camera (Logitech C920 pro HD) at a distance of 1.0
meter. A Contec CMS50E pulse oximeter was clamped on
the subject’s finger to acquire the PPG signal synchronously.
Both the camera and the pulse oximeter were connected to a
computer to transfer the acquired data in real time. The videos
were recorded with a resolution of 640 × 480 pixels under a
frame rate of 30 fps. Meanwhile, the PPG signal was collected
by the pulse oximeter at a 60 Hz sampling rate. Each video
and its counterpart PPG signal last about 4.5 minutes long.
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TABLE I
THE RESULTS ON UBFC-RPPG DATABASE: A WITHIN-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

GREEN [2] 7.50 14.41 7.82% 0.62 — — — —
ICA [5] 5.17 11.76 5.30% 0.65 — — — —
POS [7] 4.05 8.75 4.21% 0.78 — — — —
CHROM [6] 2.37 4.91 2.46% 0.89 16.54 40.90 63.20 6.63
Bobbia et al. [30] — 2.388 — 0.961 — — — —
Benezeth et al. [33] 1.21 2.41 — 0.82 — — — —
Tsou et al. [34] 0.48 0.97 — — — — — —
DAE 1.48 2.49 1.55% 0.97 9.52 19.25 41.27 3.58
PulseGAN 1.19 2.10 1.24% 0.98 7.52 18.36 39.60 7.90

The subjects were requested to sit still for the first 2 minutes,
and perform some apparent head movements for the last 2.5
minutes.

C. Metrics

We define several metrics to evaluate the quality of the gen-
erated pulse waveform. First, the IBI sequences are calculated
separately for the generated and reference pulse signals. A
series of cardiac features can then be defined according to the
calculated IBI. For example, the average HR can be calculated
from IBI as [35]

HR = 60/IBI. (3)

where IBI is the average value of the IBI sequence for the
current processing window. Similarly, we can also get HRV
features [36] of AVNN and SDNN as follows,

AVNN =
1

T

T∑
i=1

RRi (4)

and

SDNN =

√√√√ 1

T − 1

T∑
i=1

(RRi −AVNN), (5)

where AVNN indicates the average of all normal-to-normal
(NN) intervals, SDNN is the standard deviation of all NN
intervals, RRi represents the i-th R-R interval, and T is the
total number of R-R intervals.

Finally, we define the following error metrics to compare
the HR, HRV (AVNN and SDNN), IBI, and SNR calculated
from the PulseGAN and the reference signals.

1) HR: The metrics of HR values include the mean absolute
error (MAE), the root mean square error (RMSE), the
mean error rate percentage (MER), and the Pearsons
correlation coefficient (R). The formulas of these metrics
refer to [12].

2) HRV: The mean absolute error of AVNN (or SDNN) is
calculated as below:

Ymae =
1

N

N∑
n=1

∣∣∣Y ′

n − Yn

∣∣∣ , (6)

where Yn indicates the AVNN (or SDNN) for the nth
window calculated from PulseGAN, Y

′

n is the AVNN (or
SDNN) from its reference PPG signal, and N is the total
number of time windows.

3) IBI: We also define metrics to evaluate the quality of
IBI directly. Since the length of the IBI vectors may be
different, we refer to a similar way in [37] to solve this
issue. Namely, each IBI vector is expanded to the same
length as the PPG signal. We pad the i-th RR interval of
the IBI sequence with values all equal to RRi. After the
padding operation, we define the absolute error IBI(n)ae for
the nth window as below

IBI(n)ae = E(| IBI(n)predict − IBI
(n)
label |), (7)

where E refers to the mathematical expectation,
IBI

(n)
predict is the padded IBI vector of rPPG pulse, and

IBI
(n)
label is the padded IBI vector of the ground truth.

Finally, a mean absolute error for IBI vectors from all
samples is calculated by

IBImae =
1

N

N∑
n=1

IBI(n)ae , (8)

where N is the total number of time windows.
4) SNR: In order to directly compare the quality of gener-

ated waveforms, we also calculate the SNR of the pulses
referring to the definition in [6].

D. Experimental results

The experimental results are introduced following a se-
quence of within-database and cross-database configurations,
respectively.

Within-database: We first perform the within-database test-
ing on the UBFC-RPPG database. According to the time
window and the sliding step configuration, we totally get 4234
samples, where we take the 3192 samples from the first 30
subjects as the training set, and the remaining 1042 samples
from the last 12 subjects as the testing set.

The estimation results are summarized in Table I, which
are also compared with some existing methods. Among them,
GREEN [2], ICA [5], POS [7], and CHROM [6] have been
implemented with an open source toolbox [38]. The DAE
(denoising autoencoder) here refers to the method of using
the generator G of PulseGAN with only a waveform error
loss. The results of the other three methods were directly
taken from corresponding papers due to complexity of im-
plementation. From the results, we observe that the proposed
method outperforms the other comparison methods except for
the average HR results in [34]. We need to note that the testing
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Fig. 6. Bland-Altman plots between the predicted HR
(HRrPPG) and the reference HR (HRPPG) on UBFC-RPPG
database for a within-database case: CHROM vs PulseGAN.

0 1 2 3 4 5 6 7 8 9 10
400

600

800

1000

PPG

CHROM

0 1 2 3 4 5 6 7 8 9 10
400

600

800

1000

IB
I(

m
s)

PPG

DAE

0 1 2 3 4 5 6 7 8 9 10

Time(s)

400

600

800

1000

PPG

PulseGAN

(a)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Reference PPG

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

CHROM

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

N
o

rm
al

iz
ed

 A
m

p
li

tu
d

e

DAE

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0

0.5

1

PulseGAN

(b)

Fig. 7. A comparison example of IBI sequence in (a) and
rPPG pulse signals in (b) on UBFC-RPPG database: a within-
database case.

data used in [34] was lack of details and it may not be the
same as what we used here. However, we can still see that
the PulseGAN significantly improves the quality of generated
pulses compared to the input CHROM signal, especially for
the IBI and HRV related metrics.

To further evaluate the proposed method, the Bland-Altman
plots are shown in Fig.6. We can observe that the PulseGAN
has much better consistency with the ground truth compared to
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Fig. 8. Bland-Altman plots between the predicted HR
(HRrPPG) and the reference HR (HRPPG) on UBFC-RPPG
database for a cross-database case: CHROM vs PulseGAN.

CHROM. To demonstrate the improvement of the waveform
quality more intuitively, in Fig.7, we show a sample of the
pulse signal and corresponding IBI sequence. It can be seen
that the waveform and IBI sequence of the example pulse
signal are both significantly improved by DAE and PulseGAN
compared to CHROM. In Fig. 7(a), the three sub-figures
respectively show the comparison between the IBI of the
reference signal PPG and the IBI obtained by CHROM, DAE
and PulseGAN. The IBIae errors of the example in Fig. 7(a)
are 112.44, 42.50, and 24.67 ms for CHROM, DAE, and
PulseGAN, respectively.

Cross-database: In the case of cross-database, we test three
databases, including the UBFC-RPPG, PURE, and MAHNOB-
HCI, respectively.

1) Test with UBFC-RPPG: We take the PURE and BSIPL-
RPPG databases as the training set. This combination can
effectively balance the number of samples in different HR
ranges to achieve a more consistent HR distribution with the
testing set. According to the configuration of cross-database
scenario, there are total 13484 training samples obtained from
the PURE (3727 samples) and BSIPL-RPPG (9757 samples)
databases. We note that the sliding step of 0.5 seconds was
applied to generate training samples and only part of the
samples were kept for training. Next, we get total 1470
samples from the UBFC-RPPG database as the testing set.
The number of testing samples is less than we used for the
within-database case since a 1-second sliding step is taken for
the cross-database testing case instead of the 0.5 seconds used
for the within-database case.

The average HR measurements are summarized in Table II.
From the results, we can see that our method achieves the
best performance among all the comparison methods except
for the MAE of HR in [34]. Particularly, the PulseGAN
improves 20.85% (41.19%) for the AVNNmae, and improves
20.28% (37.53%) for the SDNNmae, compared to the DAE
(CHROM). Similarly, the Bland-Altman plots are illustrated
in Fig.8 to show the consistency of the predicted HR values
with the reference ones. We can see that the PulseGAN clearly
outperform the CHROM method.
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TABLE II
THE RESULTS ON UBFC-RPPG DATABASE: A CROSS-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

GREEN [2] 8.29 15.82 7.81% 0.68 — — — —
ICA [5] 4.39 11.60 4.30% 0.82 — — — —
POS [7] 3.52 8.38 3.36% 0.90 — — — —
CHROM [6] 3.10 6.84 3.83% 0.93 25.30 38.96 60.16 6.681
Bousefsaf et al. [39] 5.45 8.64 — — — — — —
Tsou et al. [34] 1.29 8.73 — — — — — —
Lee et al. [40] 5.97 7.42 — 0.53 — — — —
DAE 2.70 5.17 2.85% 0.96 18.80 30.53 49.65 4.847
PulseGAN 2.09 4.42 2.23% 0.97 14.88 24.34 42.27 7.633
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Fig. 9. A comparison example of IBI sequence in (a) and rPPG
pulse signals in (b) on UBFC-RPPG database: a cross-database
case.

Finally, we take an example to demonstrate the intuitive
enhancement on waveforms and the IBI sequence. As can be
seen in Fig.9, the IBI sequence and the related pulse waveform
obtained by PulseGAN are more close to their ground truths
compared to that of DAE and CHROM. The IBIae errors
of the example in Fig. 9(a) are 65.01, 27.44, and 23.11 ms
for the CHROM, DAE, and PulseGAN, respectively. The
experimental results of PulseGAN for the cross-database case
indicates the good generalization capability of the proposed
model.

2) Test with PURE: To test the PURE database, the UBFC-
RPPG together with the in-house BSIPL-RPPG databases are
used to prepare training set. Particularly, data augmentation
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Fig. 10. Bland-Altman plots between the predicted HR
(HRrPPG) and the reference HR (HRPPG) on PURE database
for a cross-database case: CHROM vs PulseGAN.

similar as [22] was done to balance the reference HR distribu-
tions of training and testing databases as shown in Fig.4. After
the above preprocessing, we get a total of 32505 samples for
the training data set. The number of all testing samples is 3198
under a 1-second sliding step.

The comparison results of different methods are summarized
in Table III, where the results of the first three methods are
directly taken from the corresponding papers. We observe that
the proposed PulseGAN clearly improves the results compare
to the input CHROM, which verifies the effectiveness of the
proposed method. A comparison example of IBI sequence and
rPPG pulse signal is shown in Fig.11. The comparison results
also show that the proposed method has demonstrated the
improvement of waveform and IBI vector. The IBIae errors
of this example are 42.11, 36.67, and 17.67 ms for CHROM,
DAE, and PulseGAN, respectively. Finally, the Bland-Altman
plots are illustrated in Fig.10. We can see that the PulseGAN
has much better consistency with the ground truth compared
to CHROM.

3) Test with MAHNOB-HCI: To test the proposed method
with the MAHNOB-HCI database, we prepare the training
set with the VIPL-HR database. The CHROM signals are
also extracted from these two databases for the input signals
of the network. As reported in many studies [19], [43],
[44], the CHROM method does not perform well in these
two databases because the videos are compressed and the
acquisition scenarios are complicated. We observe that some
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TABLE III
THE RESULTS ON PURE DATABASE: A CROSS-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

NMD-HR [41] 8.68 — — — — — — —
Zhao et al. [42] 3.09 4.26 — — — — — —
Tsou et al. [34] 0.63 2.51 — — — — — —
CHROM [6] 3.82 6.8 5.30% 0.97 49.63 89.3 107.4 5.499
DAE 3.24 5.97 4.33% 0.97 39.09 74.28 90.97 5.219
PulseGAN 2.28 4.29 3.33% 0.99 28.92 49.39 65.26 6.56
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Fig. 11. A comparison example of IBI sequence in (a) and
rPPG pulse signals in (b) on PURE database: a cross-database
case.

of the extracted CHROM signals are totally distorted and
the quality of some reference PPG signals in the VIPL-HR
database are also quite poor.

To ensure the convergence of training, we clean the training
data to discard low quality signals. In detail, we first remove
training samples with bad reference PPG signals through a
check based on template matching. For the input CHROM
signals in the remaining training data set, it is hard to directly
remove the bad samples because most of the samples are
occupied by noise. In order to balance the quality and the size
of training data set, we implement the quality enhancement on
the input CHROM signals for the training data as described
below. Finally, we take the same data augmentation as done
above for testing the PURE database to balance the HR
distributions. After the above preprocessing, we get 31575

samples for the training data set.
The enhancement details on the CHROM signals for training

data are shown here. Suppose the ground truth PPG signal is
y and the CHROM signal is x. Let d denote the difference
signal between x and y as d = y − x. The purpose is to
reconstruct the input as x′ = x + f(d), which should have
better quality compared to the original x. We implement a
multi-scale reconstruction of the input signal using the discrete
cosine transform (DCT). Suppose the signal d is decomposed
into DCT basis vectors X , of which the expansion coefficients
measure the energy stored in each of the components. We
retain those largest expansion coefficients to achieve the multi-
scale reconstruction. Let τ(0 ≤ τ ≤ 1) indicate the ratio of
the energy kept for the remaining DCT coefficients. If τ = 0,
it represents f(d) = 0 and x′ is equivalent to x. If τ = 1,
it represents f(d) = d and x′ is the same as the reference y.
In the experimental results listed below, we choose the ratio
τ = 0.7 for enhancing CHROM signals in the training data.
We have also tried to train the model using enhanced CHROM
signals with τ = 0.5. We observe that the testing performance
is similar as that of τ = 0.7, and thereby omitting the results
here.

To verify the generalization capability, the PulseGAN model
(ratio τ = 0.7) is tested on input signals of MAHNOB-HCI
database with SNR above different thresholds. We indicate that
the CHROM signals obtained in MAHNOB-HCI database are
still the original ones expect a selection based on SNR. The
input selection ensures that the quality of the input data is
not too bad, and otherwise the method will fail as discussed
later. The testing results for inputs with different SNRs are
summarized in Table IV. The numbers of testing samples are
3512, 4983, 6783 and 8885 for SNR above 0 dB to -3 dB,
respectively. It can be seen that the proposed PulseGAN can
significantly improve the quality of input signals with different
SNRs. We also observe that the average errors in Table IV of
CHROM with SNR> 0 dB are slightly larger than the results
obtained by Song et al. [12]. After mapping by the PulseGAN
model, the quality metrics of generated pulses consistently
outperform the ones from [12]. This verifies the benefit of the
proposed method to combine with some existing methods to
further improve their results. This is especially important when
pulse waveforms are required for calculation of HRV related
features. Similarly, the Bland-Altman plots of SNR> 0 dB and
SNR> −1 dB are illustrated in Fig.12 to show the consistency
of the predicted HR values with the reference ones. We can
see that the results of CHROM method can be significantly
improved by the PulseGAN.
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TABLE IV
THE RESULTS ON MAHNOB-HCI DATABASE: A CROSS-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

DeepPhys [19] 4.57 — — — — — — —
RhythmNet [43] — 8.28 8.00% 0.64 — — — —
PhysNet128 [27] 6.85 8.76 — 0.69 — — — —
Song et al. [12] 5.98 7.45 7.97% 0.75 — — — —

CHROM [6] (SNR>-3dB) 11.35 15.39 15.91% 0.08 155.28 196.17 266.68 -0.16
PulseGAN 7.03 10.46 10.07% 0.46 84.77 94.94 149.40 1.47

CHROM [6] (SNR>-2dB) 9.70 13.69 14.00% 0.15 138.47 192.97 251.2 0.56
PulseGAN 5.98 9.11 9.00% 0.55 75.33 88.53 136.94 2.59

CHROM [6] (SNR>-1dB) 8.08 11.91 11.85% 0.26 121.66 186.62 235.45 1.31
PulseGAN 5.03 7.85 7.77% 0.64 67.52 81.91 125.85 3.66

CHROM [6] (SNR>0dB) 6.38 9.85 9.72% 0.36 103.48 178.88 218.00 2.08
PulseGAN 4.15 6.53 6.77% 0.71 60.40 74.39 114.74 4.67
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Fig. 12. Bland-Altman plots between the predicted HR (HRrPPG) and the reference HR (HRECG) on MAHNOB-HCI database
for a cross-database case: CHROM vs PulseGAN. (a): SNR>0 dB, (b): SNR>-1 dB.

Ablation study: We further take an ablation study to evalu-
ate different factors that affect the performance of the proposed
method. The ablation study is also done on the MAHNOB-
HCI database using the same training model obtained from
VIPL-HR database with ratio τ = 0.7. In the ablation study,
we consider two aspects that may affect the performance of the
PulseGAN. To simplify the analysis, we only conduct ablation
study with input testing data satisfying SNR>0 dB in the
MAHNOB-HCI database.

First, we evaluate the influence of using adversarial and
spectrum losses in the proposed method. Different combina-
tions of loss functions will be tested with details listed as
below:
1) Use three losses simultaneously (wf, sp, adv);
2) Remove the adversarial loss (wf, sp);
3) Remove the spectrum loss (wf, adv);
4) Remove both the adversarial loss and spectrum loss (wf),
also denoted as DAE,
where adv represents the adversarial loss, wf is the waveform
loss in the time domain, and sp is the spectrum loss. We add
the case 4) here to understand the effect of using simultane-
ously the adversarial loss and spectrum loss.

The results of ablation study on loss functions are sum-
marized in Table V. It can be seen that the performance of

PulseGAN degrades compared to the case of using full loss
functions if either the adversarial loss or the spectrum loss is
removed. However, the gap is not very significant. However,
the improvement on the last four columns in Table V between
the full PulseGAN (wf, sp, adv) and the DAE is clear. It can
be seen that the SDNNmae, IBImae, and the SNR improves
13.62%, 13.13%, and 15.22%, respectively. Similar results
were also observed in Table II and Table III for the UBFC-
RPPG and PURE database, respectively. This indicates that the
simultaneous use of both spectrum and adversarial losses can
significantly enhance the waveform quality, which is helpful to
calculate reliable waveform-related features. Theoretically, the
waveform and spectrum losses enforce the generated pulse to
match with the reference one from the spatial-temporal feature
features. The use of adversarial loss can further restrict the
generation to be more realistic as the reference one from high-
level features.

Second, we evaluate the performance of the PulseGAN
model to test input signals obtained in different ways. The
purpose is to verify the robustness and generalization of the
PulseGAN model. Three types of input signals, including the
CHROM signals obtained from only the left cheek region
and only the right cheek region (as illustrated in Fig. 1),
respectively, and also the green signal obtained from the whole
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TABLE V
THE RESULTS OF THE ABLATION STUDY FOR LOSS FUNCTIONS ON MAHNOB-HCI DATABASE: A CROSS-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

CHROM [6] 6.38 9.85 9.72% 0.36 103.48 178.88 218 2.08
DAE 4.54 7.13 7.40% 0.63 64.67 86.12 132.09 4.05

(wf, adv) 4.46 6.77 7.35% 0.68 65.22 79.03 123.76 4.28
(wf, sp) 4.28 6.63 7.00% 0.70 62.72 78.48 119.82 4.27

(wf, sp, adv) 4.15 6.53 6.77% 0.71 60.40 74.39 114.74 4.67

TABLE VI
THE RESULTS OF THE ABLATION STUDY FOR DIFFERENT TESTING INPUTS ON MAHNOB-HCI DATABASE: A CROSS-DATABASE CASE.

Method HR(bpm) HRV(ms) IBI(ms) Pulse(dB)
MAE RMSE MER R AVNNmae SDNNmae IBImae SNR

CHROM [6] (left cheek) 5.93 9.13 9.30% 0.38 100.71 178.09 218.41 1.90
PulseGAN 4.35 6.43 7.40% 0.69 65.55 76.89 121.22 4.11

CHROM [6] (right cheek) 5.60 8.50 8.94% 0.40 100.23 176.61 214.36 1.88
PulseGAN 4.16 5.99 7.27% 0.71 65.84 76.9 121.38 4.18

GREEN [2] 9.07 14.29 12.31% 0.17 108.5 149.75 200.22 3.05
PulseGAN 5.53 9.91 7.54% 0.58 58.41 68.92 113.03 5.04

ROI. The testing PulseGAN model is still the one trained
by VIPL-HR database with ratio τ = 0.7 . The results are
summarized in Table VI. All the testing inputs are obtained
with SNR> 0 dB. Particularly, the errors of GREEN [2] inputs
are larger than that of CHROM signals. We can clearly observe
that the PulseGAN significantly improves the quality metrics
compared to that of the input signals for all cases. This proves
good generalization capability of the proposed method.

E. Discussion

The above experimental results verify the effectiveness of
the proposed method. Particularly, the testing results of cross-
database case on the three databases all reveal the benefit
of simultaneous usage of adversarial and spectrum losses. It
indicates that the proposed method can significantly improve
the quality of coarse CHROM inputs, especially on the car-
diac features like IBI and HRV. However, we still need to
emphasize that the convergence of training will be affected
if the qualities of training samples are too low. The usage of
data augmentation and other data enhancement techniques are
helpful to achieve reliable training. From the testing aspect,
the proposed method usually works well when the quality of
inputs is above some criterion.

To demonstrate the restriction on the quality of inputs in
an intuitive way, we show a failure case of applying the
PulseGAN method on the PURE database as shown in Fig.13.
As seen, the quality of input CHROM signal is very low with
the SNR as -7.80 dB. It indicates that the CHROM signal is
still occupied by noise, of which the discrepancy with the cor-
responding reference PPG signals is huge. After mapping by
the PulesGAN model, the SNR of the waveform is improved to
-5.53 dB. Although the PulseGAN model improves the quality
metrics compared to the input, the generated results are still
degraded due to influence of noise in the inputs. The IBIae
for the CHROM signal in this sample is 123.22 ms, which is
reduced to 103.11 ms by the PulseGAN. However, it is still
obviously larger than the average IBImae (65.26 ms) in Table
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Fig. 13. A failure example from PURE database due to bad
input quality: a cross-database case.

III. This failure case shows that the quality of the testing input
data is critical to the success of the PulseGAN.

In summary, the proposed method provides a general frame-
work to combine with existing methods to further enhance
the quality of waveforms. This is useful when high-quality
waveforms are required to calculate more cardiac features.

V. CONCLUSION

Cardiac signal is very important to evaluate the healthy
and emotional status of human bodies. In this paper, we
have proposed a PulseGAN method to extract high-quality
pulse waveforms through remote photoplethysmogrpahy. The
PulseGAN is designed based on a framework of generative
adversarial network with error losses defined in both time
and spectrum domains. It takes the rough CHROM signal
as the input, and outputs an enhanced rPPG pulse through
the deep generative model. It is also easy to integrate the
PulseGAN framework with existing rPPG methods for further
improving the quality of generated waveforms. The experi-
mental results on three public databases demonstrate that the
PulseGAN consistently enhances the quality of coarse input
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waveforms for both within-database and cross-database cases.
The comparison results with other typical rPPG methods such
as the DAE verifies the superior performance of PulseGAN
to generate high-quality waveforms. The proposed PulseGAN
has demonstrated the feasibility of calculating more reliable
cardiac features like the HRV characteristics through rPPG.
Although the results in this paper are relatively preliminary,
these attempts are meaningful to extend the application scope
of rPPG techniques.
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