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Abstract—Deep learning based inverse scattering (DL-IS)
methods attract much attention in recent years due to advan-
tages of fast speed and high-quality reconstruction. The loss
functions of neural networks in DL-IS methods are commonly
based on a pixel-wise mean squared error (MSE) between
the reconstructed image and its reference one. In this arti-
cle, we introduce a structural similarity (SSIM) loss function
to combine with the MSE loss for reconstructing dielectric
targets under a DL-IS framework. The SSIM loss imposes a
further regularization on the target at the perceptual level.
Numerical tests for both synthetic and experimental data
verify that this new perceptually-inspired loss function can
effectively improve the imaging quality and the generalization
capability of the trained model.

Index Terms— Inverse scattering, convolutional neural network, structural similarity loss.

I. INTRODUCTION

ELECTROMAGNETIC inverse scattering problem (ISP) is
a very challenging yet fundamental problem commonly

required by biomedical imaging [1], geophysics [2], through-
wall imaging [3], remote sensing [4] and non-destructive
testing [5] etc. In general, the ISP is highly nonlinear and
ill-posed. Over years, researchers have proposed various recon-
struction methods to determine the position, shape and con-
stitutive parameters of unknown scatterers from measured
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scattered field. Conventional ISP methods generally retrieve
the unknown parameters through a nonlinear optimization
with regularization terms [6]. Typical nonlinear ISP meth-
ods include the distorted Born iterative method (DBIM) [7],
the contrast source inversion (CSI) method [8], and the sub-
space optimization method (SOM) [9] etc. Those nonlinear
inverse scattering methods achieve good performance in many
applications. However, the computational costs are usually
expensive and the imaging quality may degrade greatly for
complex cases with high nonlinearities.

In the past few years, deep learning techniques have been
widely used in image processing and computer vision. Inspired
by the great success in these areas, researchers have also
applied deep learning methods to solve the electromagnetic
ISP in recent years [10], [11]. For example, Li et al. [12]
proposed a ‘DeepNIS’ algorithm based on a complex con-
volutional neural network technology (CNN) to build up a
mapping between the rough image got by the backpropagation
(BP) [13] method and the target profile. Wei and Chen [14]
proposed a dominant current scheme (DCS) to improve the
quality of input image, and therefore simplified the nonlinear
mapping of input-and-output pairs.

The existing results of deep learning based inverse scattering
(DL-IS) methods have demonstrated significant improvements
on imaging quality and speed compared to traditional nonlin-
ear ISP methods. However, there is still a big roof to improve.
It is well known that the loss function has a significant impact
on the reconstruction quality. However, there is little attention
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paid on the loss functions in existing DL-IS methods, and
the mean squared error (MSE) loss or the mean absolute
error (MAE) loss is commonly taken to optimize the network
parameters [14]–[17]. As known, the MAE or MSE loss
enforces a pixel-wise match between the reconstructed image
and its reference. On the other hand, the target images com-
posed by dielectric parameters in ISP usually have apparent
structural feature. Hence, the reconstructed image not only
needs to match with the reference on a pixel-wise level but also
needs to match it on the perceptual level. This is considered to
reduce artifacts in the reconstruction with the help of intrinsic
structural information of targets.

The structural similarity (SSIM) index [18] is a well-known
metric to measure the perceptual distance of two images
based on luminance, contrast and texture. Since SSIM is
differentiable, it can be used as a loss function to evaluate the
perceptual distance of the output image and the corresponding
reference. For example, Snell et al. [19] employed the SSIM
loss in the image generation task and they achieved a superior
performance of using a single SSIM loss compared to the
common MAE or MSE loss. Zhao et al. [20] further evaluated
the performance of combining SSIM loss with the MAE loss in
the image restoration task. The results showed that the hybrid
loss achieved better performance over that using a single pixel-
wise loss or a single perceptual loss.

The above studies on SSIM losses all belong to the field
of natural image processing and they have demonstrated
outstanding performance in related tasks. Inspired by these
works, we investigate the role of SSIM loss to solve ISP
under the DL-IS framework. We need to point out that this
study is meaningful compared to existing works considering
the following reasons. It aims to bring attention to alter-
native choices of loss functions for DL-IS reconstructions.
Although the SSIM index has been employed in existing
DL-IS methods [12], [14], [21] to evaluate the results, the use
of SSIM as a perceptual loss in the training process has not
yet been investigated for solving ISP. Since the SSIM loss
can measure the perceptual distance between the reconstructed
image and the target image, it is expected to enhance the
imaging quality of the DL-IS method. On the other hand,
the obtained model is thought to be more robust against
noise because the structural similarity metric can suppress the
interference of noise. It is important to explore the influence
of SSIM loss for the DL-IS method under different noise
levels.

Based on above reasons, in this article, we investigate the
role of SSIM loss to solve ISP under a general deep learning
framework. In detail, the BP method is used to obtain a
rough input image from measured scattered fields. The low-
resolution input image is then mapped through a U-net [22]
CNN to generate a high-resolution output image that matches
with the reference image. The SSIM loss is combined with the
commonly-used MSE loss in the objective function to train the
U-net model. This can enforce the network to further learn
high-level perceptual features of targets and hence improve
the reconstruction quality. We compare the inversion results
of the obtained model with and without use of the SSIM loss
for both synthetic and experimental data. The results show that

Fig. 1. Typical setups for inverse scattering problems.

the use of SSIM loss can effectively improve the reconstruction
quality as well as the generalization capability of the trained
deep model under different levels of noise.

II. DESCRIPTION OF THE ALGORITHM

A. Forward Problem
In this article, we consider a two-dimensional (2-D)

transverse-magnetic (TM) [23] case of ISP. As illustrated
in Fig. 1, the unknown lossless dielectric scatterers are located
in the domain of interest (DOI) with a free-space background.
The shape, position and the relative permittivity of the scat-
terers need to be determined with the measured scattered
fields. The transmitters Txi(i = 1, 2, . . . , NT ) and the receivers
Rxi(i = 1, 2, . . . , NR ) are uniformly distributed along a
circle S outside the DOI.

We use the method of moment (MOM) [24] to simulate
the scattered field. Suppose the DOI is discretized into
N × N grids. The governing Lippmann-Schwinger
equation [6] in the DOI can be described as

E
tot = E

inc + G D · ξ · E
tot

, (1)

where E
inc

and E
tot

represent the incident and total fields,
respectively, and G D is the matrix of two-dimensional Green’s
function mapping the contrast source J = ξ · E

tot
to the

scattered filed in the DOI D. The diagonal matrix ξ indicates
the permittivity contrast of the scatterer, and the nth diagonal
element of ξ is expressed as ξ(n, n) = εr (rn) − 1, where
εr (rn) is the relative permittivity at subunit rn . The equation
in (1) is also denoted as the state equation in ISP papers.

After getting the induced current in domain D, the scattered
field E

sca
at the receiver locations can be got as

E
sca = GS · ξ · E

tot
, (2)

where GS is the matrix of two-dimensional Green’s function
mapping the contrast source from the target area D to the
scattered fields measured at the receiving antennas located
at S.

The goal of ISP is to determine the relative permittivity
of unknown scatterers from the observed scattered fields
following (1) and (2).

B. DL-IS Method With SSIM Losses
As illustrated in Fig. 2, the full DL-IS framework recon-

structs the images from scattered fields following two pro-
cedures, i.e., the non-iterative model-based inversion method
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Fig. 2. The flowchart of the DL-IS method.

to map the scattered filed to a coarse input image, and the
CNN to further enhance the resolution of input. It combines
the advantages of the fast speed of non-iterative inversion and
the powerful capability of CNN to enhance the resolution of
scatterer images.

Specially, in this article, we take the BP as the non-iterative
method and the U-net as the CNN. We denoted this full
method as the ‘BP-U-net’ hereafter. It is well-known that the
BP reconstruction will be distorted for strong scatterers,
those with high contrast and (or) electrically large size.
This shortcoming can be partially remedied by the powerful
nonlinear fitting ability of U-net to build complicated
one-to-one mappings between the input and output images.
However, for challenging cases with strong multiple scattering
effects, we may choose to construct the input image with
more advanced methods such as the dominant current scheme
(DCS) or the non-iterative methods based on singular value
decomposition (SVD) [25].

In detail, a rough image x is firstly reconstructed from the
measured scattered field E

sca
by the BP method. The low-

resolution x is then processed by the U-net Gθ to enhance the
quality. The high-resolution output image Gθ (x) is matched
with the ground truth y under some loss metric, where the
parameters of Gθ are then updated through a gradient based
optimization. Next, we will introduce the related details.

1) The Generation of Input by BP: In this article, the
BP method from [13] is taken to generate the rough image x .
The BP is a fast linear inversion method, which can be
described as follows. First, we need to determine the induced
current J j corresponding to the j th incident wave under an

assumption that J j = γ j · G
H

S · E
sca
j , where the superscript

H denotes the conjugate transpose operation, and γ j is the
unknown complex scaling coefficient. For simplicity, we omit
the subscript j of the incident field in the following formula.

The complex γ can be explicitly obtained through minimiz-
ing the following objective function

F(γ ) = ||Esca − GS · γ · G
H

S · E
sca||2, (3)

where γ can be solved as

γ =

〈
E

sca
, GS · (G

H

S · E
sca

)

〉
S∥∥∥∥GS · (GH

S · E
sca

)

∥∥∥∥
S

. (4)

Here �·, ·�S denotes the inner product of two vectors in the
domain S.

Fig. 3. The structure of the U-net CNN.

Next, the total electric field E
tot

in D can be calculated
by (1). The above process is repeated for all NT incident
waves. Finally, following the relation of J (r) = ξ(r) · Etot(r)
at location r , we take into account of all the obtained total
fields and contrast sources to get the contrast ξ(r). This can
be considered as a least-squares problem and we get the ξ(r)
as

ξ(r) =
∑NT

p=1 Jp(r) · [Etot
p (r)]H

∑NT
p=1 [Etot

p (r)]2
. (5)

The rough input image x of relative permittivities can then be
obtained using the contrasts ξ(r) in (5).

2) The U-Net CNN: In this article, the well-known U-net
is chosen as the CNN Gθ to build the nonlinear mapping
between the rough input x and the reference image y as
illustrated in Fig. 2. The structure of the U-net is shown
in Fig. 3. It can be seen the U-net architecture consists of
two branches. The encoding branch on the left is to extract
different levels of feature maps, while the decoding branch on
the right is to reconstruct the image through deconvolutions
of corresponding features. The skip connections are taken to
concatenate feature maps of convolutional and deconvolutional
blocks from the same level. The settings of U-net are given
in Fig. 3. Since it has been used in many studies, the readers
can also refer to papers [14], [22] for more details.

3) The SSIM Loss Function: In order to determine the weight
parameters of the neural network Gθ , we define a hybrid loss
function as

L f ull(ŷ, y) = Lmse(ŷ, y) + αLssim(ŷ, y), (6)

where ŷ = Gθ (x) is the reconstructed image by Gθ , y denotes
the target image, Lssim is the SSIM metric to measure the
perceptual distance of two images, Lmse is a pixel-wise
MSE loss, and α is the weight of Lssim loss.

In detail, the Lmse loss in (6) is defined as

Lmse(ŷ, y) = 1

W ∗ H

W∑
i=1

H∑
j=1

(ŷi, j − yi, j )
2, (7)

where W and H indicate the width and hight of images,
respectively.
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The Lssim in (6) is defined as

Lssim = 1 − SSIM(ŷ, y)

= 1 − (2μŷμy + C1)(2σŷ y+C2)

(μŷ
2 + μy

2 + C1)(σŷ
2 + σy

2 + C2)
, (8)

where μŷ denotes the mean of ŷ, σ 2
ŷ is the variance of ŷ,

and σŷ y indicates the covariance of ŷ and y. The C1 and C2
in (8) are small constants to avoid zero in the denominator,
where C1 = (K1 L)2 and C2 = (K2 L)2 with K1 = 0.01 and
K2 = 0.03 as two hyperparameters, and L as the dynamic
range of pixel values of the target image y.

The SSIM index measures the perceptual distance of two
images considering the similarity of luminance, contrast and
structure information. This is because the μŷ and σŷ can
be taken as estimates of the luminance and contrast of ŷ,
respectively, and σŷ y represents the structural similarity of ŷ
and y.

It should be noted that the SSIM loss is actually imple-
mented on patches of image. Suppose the full image is divided
into Np patches with each patch occupying M × M pixels.
Then the loss function defined for the full image can be written
as

L f ull (ŷ, y) =
Np∑
j=1

Lmse(ŷ j , y j ) + αLssim(ŷ j , y j ), (9)

where ŷ j and y j are the j th patch of the images ŷ and y,
respectively.

Therefore, in order to improve the quality of reconstruction,
the U-net will be optimized with the full loss L f ull defined
in (9), which combines the pixel-wise Lmse and the perceptual
Lssim losses.

III. EXPERIMENTS

In this section, we choose three examples including both
synthetic and experimental data to verify the effectiveness
of the SSIM loss in the reconstruction. We will compare
the performance of BP-U-net using the combined L f ull loss
(denoted as ‘BP-U-net+L f ull ’) with the one using only the
pixel-wise Lmse loss (denoted as ‘BP-U-net+Lmse’). Mean-
while, we further verify the pros and cons of the presented
method compared to the existing deterministic algorithms. The
subspace optimization method (SOM) is chosen for compari-
son and more details of SOM can be found in [26].

A. Training Details
In the proposed method, the handwritten digits in Mixed

National Institute of Standards and Technology database
(MNIST) are used as the training data and validation data for
all examples. The MNIST database has been widely used in
deep learning based inverse scattering (DL-IS) research [12],
[15], [21]. Since the main purpose of this article is to inves-
tigate the role of SSIM loss to DL-IS methods, we choose
similar training data sets as the exiting works. In general,
the number of training samples depends on the complexity of
the network we use. The more complex the neural network is,
the larger number of training samples should be used to train

Fig. 4. Training samples of digit-like objects. (a) 16 ground truths
(b) 16 input images by the BP method.

Fig. 5. Validation results under different patch sizes and different weight
parameters α.

the parameters in the network. We finally randomly selected
5000 images from MNIST as the training data set and another
2500 images as the validation data set considering both the
capacity and complexity of the network. In order to enhance
the generality capability of the model, we randomly rotated
the digit and also add a random circle to the DOI D to rep-
resent possible multiple scatters as referred to [21]. In detail,
a random circle with radius from 0.1m to 0.5m is incorporated
into each digit to improve the model generalization capability.
Meanwhile, each digit is randomly rotated with an angle
between −170◦ and 170◦ to account for the spatial diversity
of the scatterers. All scatterers are assumed to be lossless
dielectrics with relative permittivity εr randomly distributed
between 1.5 and 2.5. In Fig.4, we demonstrate 16 randomly
selected training samples, where the ground truth images are
presented in Fig.4 (a) and the related rough BP input images
are illustrated in Fig.4(b).

The DOI D is chosen as a square domain with size
of 2.0 m×2.0 m in a free space background. Moreover, 16 lin-
early polarized transmitters, which are located uniformly over
a circle S with radius R = 3.0 m, successively illuminate the
investigation domain. Meanwhile, 32 co-polarized receivers
are used to collect the scattered field. The operating frequency
is set as 400 MHz. For each incidence, we calculate the
scattered field using the MoM, where D is discretized into
100 × 100 grids. To avoid the inverse crime, the grids used
for reconstruction are changed to 64×64. The scattered field
used in the training stage is always noiseless for all examples.

The Adam optimization method is taken to optimize the
U-net with the exponential decay rates set as β1 = 0.9
and β2 = 0.999, respectively. Some other hyperparameters
used for training are listed as follows. The batch size is
taken as 1 and totally 20 epochs are used to train the
model. The learning rate is initially set to 0.0002 during the
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Fig. 6. Reconstruction results of Test#1 to Test#4 from the MNIST data set with 10% white Gaussian noise.

first 10 epochs and it sequentially decreases to zero from the
11th to the last epoch. All network training and testing are
done on a workstation (Intel Core i7-6800K and 64 GB RAM)
with a single Nvidia GeForce GTX 1080 Ti using PyTorch
framework, and the related SSIM loss is implemented with an
open source code ‘pytorch-msssim’.1

We set the dynamic range L in SSIM loss (equation (8))
as 2.5, since the relative permittivity εr is randomly distributed
between 1.5 and 2.5 in the training set. Another parameter
that affects the performance of SSIM loss is the patch size M
in (9). During the training process, we determine an optimal
M with the validation set using a parameter sweeping method.
Suppose the weight parameter α of the hybrid loss in (9)
is fixed as 1.0, which is relatively large so that it can
highlight the role of SSIM loss. We train the U-net model
with the patch size M gradually increased from 5 to 13 and
evaluate the performance of models on the validation set. The
corresponding results are presented in Fig. 5 (b). The Root-
Mean-Square Error (RMSE) and SSIM are two metrics used to
compare the reconstruction results. We observe that the model
achieves overall the best performance on the validation set
when M = 13. Hence, we set the patch size as 13 × 13 for
all examples.

The weight parameters α balances the MSE and the SSIM
losses. We also explore the impact of α using the validation

1https://github.com/VainF/pytorch-msssim

Fig. 7. Statistical histograms of the reconstructed results. (a) SSIM
(b) RMSE.

set with α gradually increasing from 0.005 to 5.0. The results
from validation set are shown in Fig. 5 (a). We observe that the
metrics of SSIM and RMSE have both been clearly improved
when α is within the range of [0.05, 0.5]. Particularly, the best
results are achieved at the two ends when α is chosen as
0.05 or 0.5. It indicates that there is little impact of SSIM
loss on the reconstruction results if α is smaller than 0.05.
Otherwise, it may overweight the SSIM term and lead to a
worse result if α exceeds 0.5. The weight α can be selected
from the interval of [0.05, 0.5] according to the specific
problem.

B. Test With MNIST Data
In the first example, we test all the candidate methods with

another 1500 images randomly selected from MNIST data set.
The scattered fields in all testing samples are contaminated
with 10% white Gaussian noise.
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TABLE I
COMPARISON OF RECONSTRUCTION RESULTS FOR SOM, BP-U-NET MODEL WITH A Lmse LOSS

AND BP-U-NET MODEL WITH A Lfull LOSS IN THE MNIST TESTING DATA SET

Fig. 8. Reconstruction results of “Austria” profiles under different noise levels. Test#5 to Test#8 are obtained with additional 10%, 15%, 20% and
25% white Gaussian noises, respectively. The first row shows the ground truth image (left) and the reconstructed result by BP with 10% noise (right).

The reconstruction results of Test#1 to Test#4 are shown
in Fig. 6. We can observe that the BP-U-net model with the
hybrid L f ull loss has achieved the best reconstruction results
compared to that with only the MSE loss and the SOM. The
quantitative evaluation results for all samples are summarized
in Table I, and we can clearly see that the proposed method
outperforms the other two methods on both the average SSIM
and RMSE metrics. In order to compare the performance
of BP-U-net models obtained with the single Lmse and the
hybrid L f ull losses more intuitively, the metric distributions
of all testing samples are illustrated in Fig. 7. We can see that
the BP-U-net method with the SSIM loss has achieved better
imaging quality for the MNIST data compared to the BP-U-net
results with only the pixel-wise MSE loss.

C. Test With “Austria” Profile Under Different Noise
Levels

In the second example, we verify the generalization capabil-
ity of the model using the well-known “Austria” profile [27]
under different noise levels. The same BP-U-net model as

the first example is taken to reconstruct the scatterer. The
“Austria” profile has a relative permittivity of εr as 1.5.
We separately add 10%, 15%, 20% and 25% white Gaussian
noises to the scattered field to test the robustness of the model.

In Fig.8, we present the reconstruction results of all the
three methods. It can be seen that the BP-U-net with hybrid
loss L f ull has achieved better imaging quality for all the cases
under different noise levels. The SSIM and RMSE metrics for
Test#5 to Test#8 are also listed in Table II, where the results
of BP-U-net model with the hybrid loss L f ull consistently
outperform those ones with only the MSE loss. It is indi-
cated that the perceptual SSIM loss effectively improves the
reconstruction quality for the challenging “Austria” profile.
This example also proves that the SSIM loss maintains a good
generalization capability of the trained model under different
noise levels.

D. Test With Experimental Data
Finally, we also validate the effectiveness of perceptual

SSIM loss using experimental data measured by Institue
Fresnel [28]. A “FoamDielExt” profile under a TM case is
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TABLE II
COMPARISON OF RECONSTRUCTION RESULTS FOR “Austria” PROFILE IN FIG.8

Fig. 9. The “FoamDielExt ” profile from Fresnel experimental data.

Fig. 10. Reconstruction results of “FoamDielExt ” profile at 3 GHz with
(a) BP (b) SOM (c) BP-U-net+Lmse and (d) BP-U-net+Lfull.

taken to test as shown in Fig. 9. The “FoamDielExt” profile
consists of two cylinders, where the blue foam cylinder has a
diameter of 80.0mm with εr as 1.45 ± 0.15, and the yellow
copper tube has a diameter of 28.5mm with εr as 3±0.3. There
are 8 linearly polarized transmitters and 241 co-polarized
receivers located at a circle of radius as de= 1.67 m.

In this example, we use the same MNIST training profiles as
the above two examples. But we need to change the frequency
from 400MHz to 3GHz to be consistent with the experimental
data. Accordingly, the size of DOI is also changed from
2.0 m × 2.0 m to 0.2 m × 0.2 m. In this example, we set the
weight parameters α in the hybrid loss function as 0.05.

The reconstructed results of “FoamDielExt” profile are
shown in Fig. 10. It can be seen that the BP-U-net method with
hybrid losses achieves much better image quality compared to
the one with only a pixel-wise MSE loss in the experimental
data. The corresponding SSIM index is increased from 0.855
to 0.886, while the RMSE is reduced from 0.176 to 0.158.

It indicates that the perceptual SSIM loss is also effective
when dealing with real ISP data. But we also observe that
the SOM method gets a litter better results compared to the
other two BP-U-net methods, where the SSIM is 0.914 and the
RMSE is 0.100. It indicates that the SOM method has good
generalizations to different profiles since it is a model-based
inversion method. Whereas, considering the training set used
by BP-U-net is totally different from the testing profile herein,
the reconstruction performance of BP-U-net with hybrid losses
is still satisfied. On the other hand, the SOM runs for 50
iterations and it takes 39.370 seconds to get the results in
Fig. 10. In contrast, the BP-U-net method with hybrid losses
only takes 0.716 seconds to achieve similar reconstructions.
This example further indicates the pros and cons of BP-U-net
methods under the DL-IS framework.

In summary, the proposed method is tested on three exam-
ples including the MNIST digits, the “Austria” profile and the
Fresnel experimental data. All the results verify the effective-
ness of the perceptual structural similarity loss to enhance the
quality of reconstructions. It should be noted that we have also
got similar conclusions for the SSIM loss to combine with the
MAE loss. To save space, we omitted related results here.

IV. CONCLUSION

In this article, we have systematically evaluated the effec-
tiveness of using the SSIM loss to improve the reconstruction
quality of ISP under the common DL-IS framework. The
hybrid loss with a perceptual SSIM term has been proven to
consistently outperform the original MSE one. The results for
both synthetic and experimental data validate that the use of
SSIM loss can effectively reduce artifacts of the reconstruc-
tions and thereby enhance the imaging quality. Besides, a good
generalization capability has also been validated even for the
challenging ISP cases.

Although this article uses the SSIM loss as an example,
other differentiable perceptual metrics can also be considered
to build the loss functions. Overall, the current study provides
a new idea to improve the reconstruction quality of DL-IS
methods. The use of perceptual loss is expected to play an
important role in real ISP applications, especially for imaging
targets with complex texture information.
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