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Abstract—In this paper, a unified learning-based ap-
proach is introduced to solve inverse scattering problems
(ISPs) with mixed boundary conditions. The scattering
behavior of hybrid dielectric and perfect electric conductors
(PEC) scatterers is modeled by the T-matrix method. A rough
image of the zero-order T-matrix coefficients for unknown
scatterers is firstly reconstructed by the back-propagation
method, which is then refined by an attention-assisted
pix2pix generative adversarial network. The spatial atten-
tion mechanism is utilized to enforce the generator network
to learn salient features of the unknown scatterers instead
of the background. The adversarial training of the generator
and the discriminator further enables the reconstructed
image to be constrained by high-level features of reference
scatterers. Numerical tests on both synthetic and experimen-
tal data verify the superior performance of the proposed
method for ISP reconstructions with hybrid scatterers. It
effectively expands the application scope of learning-based
ISP methods to reconstruct scatterers without knowing the
boundary conditions of scatterers in advance.

Index Terms—Inverse scattering, generative adversarial
network, T-matrix, mixed boundary conditions.

I. Introduction

THE objective of inverse scattering problems (ISPs)
is to determine the position, shape, and parameters

of unknown scatterers based on the measurement of
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scattered field [1]. The fast and high-quality reconstruc-
tion of ISPs is urgently demanded in many areas [2]–[4].
After decades of development, various inverse scattering
algorithms have been proposed. As far as we know, most
existing methods are designed with prior information
on the physical properties of unknown scatterers. For
example, the scatterers are assumed a priori to be dielec-
tric [5]–[7] or perfect electric conductor (PEC) [8]–[10].
However, it is common that the information of boundary
conditions (BCs) for unknown scatterers is lacking in
ISPs. Particularly, the PEC and dielectric scatterers may
both be presented in the domain of interest (DOI).

To solve ISPs with mixed BCs, the forward scattering
of hybrid scatterers needs to be modeled under a uni-
form framework. The T-matrix method introduced by
Waterman [11] has the ability to deal with scattering
with mixed BCs. Inspired by the pioneering work [12]–
[14], Ye et al. [15] firstly proposed to simultaneously
reconstruct dielectric and PEC scatterers using the T-
matrix method. They reformulated the subspace based
optimization method (SOM) [7] with the T-matrix mod-
eling to deal with the mixed BC problem. The authors
also introduced a classification criteria to classify the
PEC scatterers from the dielectric ones based on the
obtained T-matrix coefficients. Later, Song et al. [16]
further extended this method to reconstruct scatterers
with at most four types of BCs. The methods [15], [16]
have been verified to be very efficient for reconstructing
scatterers without prior information on their physical
properties. However, the nonlinear iterative T-matrix
methods [15], [16] are usually time-consuming, since
the multi-pole expansions greatly increase the compu-
tational burden.

In recent years, considering the advantages on speed
and reconstruction quality, deep learning techniques
have been widely used to solve electromagnetic ISPs [17],
[18]. The learning-based inversion methods can be gener-
ally divided into three types [18]. The first type of meth-
ods directly reconstruct the permittivity of scatterers
from the measured scattered field [19]–[21]. This kind of
methods need to fully learn the governing physics of the
inversion, which is a very challenging task. The second
type of methods still follow the iterative framework
to solve the ISPs as a optimization of cost functions,
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which enforce physical match of measurements [22]–
[24]. The deep learning techniques are incorporated into
the iterative frameworks to overcome the bottleneck
of conventional iterative methods. The third type of
methods design the reconstruction algorithms by incor-
porating domain knowledge into the networks, which
are called physics-inspired learning approach [20], [25]–
[28]. A typical way of physics-inspired learning ap-
proach is that it decouples the full-wave model into
a two-step reconstruction. The scattered field is firstly
taken to get a rough reconstruction by fast imaging
methods like backpropagation (BP) [1]. Neural networks
are then employed to further enhance the quality of the
rough input image through building a mapping with its
reference one. In contrast, Guo et al. [28] introduces an
iterative deep neural network to enforce the match of
scattered filed in the 2D case. The existing learning-
based inversion methods have achieved great success
in terms of computational speed and imaging quality.
However, these existing learning-based methods are only
designed to solve ISPs with known BCs, and most of the
methods only consider the reconstruction of dielectric
scatterers.

In this paper, we introduce a unified learning-based
method to reconstruct scatterers for ISPs with mixed
BCs. The proposed method follows the framework of
physics-inspired learning approach. It decouples the
full-wave inversion into a two-step reconstruction. Par-
ticularly, the scattering of hybrid scatterers is modeled
by the T-matrix method. A rough reconstruction of zero-
order T-matrix coefficients is firstly obtained by the BP
method, which is then refined by an attention-assisted
pix2pix generative adversarial network (GAN) [29]. The
spatial attention mechanism is incorporated into the U-
net-like [30] generator network to highlight the feature
learning on the unknown scatterers. The adversarial
training of the generator and the discriminator enables
the reconstruction to be constrained by high-level fea-
tures of reference scatterers. Finally, a balancing treat-
ment is introduced to deal with the distinct magnitude
scales of T-matrix coefficients for PEC and dielectric
scatterers, thereby improving the training of model.
The proposed method is tested with both synthetic and
experimental data and it achieves satisfactory imaging
results for ISP with mixed BCs.

In summary, the benefits of the proposed method are
listed as below:

1) First, we introduce a unified model to reconstruct
scatterers with different BCs. The zero-order T-
matrix coefficients instead of the commonly used
relative permittivity are reconstructed through the
learning-based model without knowing the type of
scatterers in advance. To the best of our knowledge,
it is the first time that the learning-based approach
is introduced to solve the ISP with mixed BCs.

2) Second, a spatial attention is incorporated into the
pix2pix GAN to highlight the feature learning on
the unknown scatterers. The use of spatial atten-

tion mechanism, together with the guidance by the
discriminator, effectively improves the quality of
reconstruction. Meanwhile, the use of only zero-
order T-matrix coefficients greatly accelerates the
reconstruction speed compared to nonlinear itera-
tive ISP methods.

3) Third, we propose a way to balance the T-matrix
coefficients of PEC and dielectric scatterers in
the reference images of the training data set. It
effectively improves the convergence of network
training, and it is also beneficial to enhance the
performance to reconstruct hybrid scatterers.

The structure of this paper is as follows. In Section II,
we introduce the formulations of the proposed method.
Numerical verifications of this method are condutcted
in Section III by both synthetic and experimental data.
Finally, we conclude our work in Section IV.

II. Description of the algorithm

A. Formulation of the problem
In this paper, we consider a two-dimensional (2-D)

transverse magnetic (TM) scattering problem as depicted
in Fig. 1. Suppose there are at most two types of nonmag-
netic scatterers, the dielectric and the PEC scatterers,
located inside the domain of interest (DOI) D. There
are Ni plane waves illuminated evenly from transmitters
(Tx) outside D. For each incidence, the scattered fields
are measured by Nr receivers (Rx) located at a circle S
outside D.

Fig. 1. Sketch of scattering problem with mixed BCs.

Let the DOI D be discretized into subunits. According
to the definition of T-matrix, the relation of scattered
filed and the incident field on the ith subunit within D
can be expressed as follows

āi = ¯̄Ti · [ēi +
N∑

j=1,j,i

¯̄αij · āj ], (1)

where āi refers to the amplitude vector of the induced
multipoles, ēi indicates the vector of multipole expansion
coefficients for the incident field, ¯̄αij is the translational
matrix, and ¯̄Ti is the diagonal T-matrix coefficient matrix
of the ith subunit.
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Particularly, the mth-order T-matrix coefficient of a
dielectric scatterer is [31]

[ ¯̄T ]m =
kJm(k0R)J ′m(kR)− k0Jm(kR)J ′m(k0R)

k0H
(1)′
m (k0R)Jm(kR)− kJ ′m(kR)H (1)

m (k0R)
, (2)

where Jm is the mth-order Bessel function of the first
kind, H (1)

m indicates the mth-order Hankel function of
the first kind, k0 is the wavenumber of the incident wave
in background medium, k = k0

√
εr is the wavenumber

of the incident wave in the scatterer with εr as the
relative permittivity, and R is the equivalent radius of
each subunit.

Similarly, the mth-order T-matrix coefficient of PEC is

[ ¯̄T ]m = − Jm(k0R)

H
(1)
m (k0R)

. (3)

The explicit expressions of all the other variables in
Eq. (1) can be found in [15] or the literatures inside.

For a single incidence, we combine the Eq. (1) on each
subunits into one matrix equation as

ā = ¯̄O · [ē − ¯̄A · ā], (4)

where ¯̄O is a block diagonal matrix with [ ¯̄O]ii = ¯̄Ti , [ ¯̄A]ij =
− ¯̄αij for i , j and zero otherwise, [ā]i = āi and [ē]i = ēi .

After getting the amplitude vector ā, the scattered field
vector Ēsca at all Nr receivers can be obtained by

Ēsca = ¯̄Ψ t · ā, (5)

where t indicates the transpose, ¯̄Ψ represents the map-
ping which maps ā within D to Ēsca on receivers.

Eqs. (4) and (5) are referred to as the state equation
and the field equation, respectively. In the forward scat-
tering problem, with given T-matrix coefficients ¯̄O and
incidence expansion ē, the purpose is to calculate the
unknown Ēsca and ā by these two equations. The advan-
tage of the T-matrix modeling is that it can uniformly
model the scattering of scatterers with different BCs.

In contrast, the inversion aims to reconstruct the T-
matrix coefficients ¯̄O through measured scattered fields
Ēsca and the corresponding incidence expansion ē. Ac-
cording to Eqs. (4) and (5), the cost function of ISP with
the jth incidence can be directly built as

fj ({ā}j , ¯̄O) =
1
2

(
‖{Ēsca}j − ¯̄Ψ t · {ā}j‖2/‖2{Ēsca}j‖22

+ ‖{ā}j − ¯̄O · [{ē}j − ¯̄A · {ā}j ]‖22/‖{ē}j‖
2
2

)
,

(6)

where ‖ · ‖2 represents the l2 norm, {·}j indicates the
full resulting vector of {·} for the jth incidence. The
unknowns are the T-matrix coefficients ¯̄O and the mul-
tipole expansion coefficient ā with respect to the current
incidence.

For all Ni incidences, the total cost functional F can
be given as

F({ā}j=1,2,...,Ni ,
¯̄O) =

Ni∑
j=1

fj ({ā}j , ¯̄O), (7)

where {ā}j=1,2,...,Ni indicate the ā for all Ni incidences, and
fj is the cost function in Eq. (6) for the jth incidence.

In [15], the cost functional F in Eq. (7) is reformulated
under the framework of SOM by decomposing ā into
the deterministic part and the ambiguous part, where
the former one can be easily determined by the singular
value decomposition of ¯̄Ψ t . The {ā}j=1,2,...,Ni and the T-
matrix coefficients ¯̄O can be updated alternatively by
a gradient-based optimization in SOM. It is found that
the T-matrix SOM [15] can efficiently solve the ISP with
mixed BCs and it performs robustly in presence of noise.

After the retrieval of T-matrix coefficients ¯̄O, the
physical property of scatterers can be distinguished by
the asymptotic expansions for the zeroth-order T-matrix
coefficient [T ]0 with small k0R [15], [16]. The imaginary
part of [T ]0 for PEC scatterer is negative, while that
of the dielectric scatterer is positive. This paper will
also use this criterion to distinguish the two types of
scatterers from the reconstruction results.

B. The unified learning-based ISP method

The flowchart of the proposed method for solving
ISP with mixed BCs is illustrated in Fig. 2. As shown,
the coarse image x of [T ]0 is reconstructed by the BP
method, which serves as the input of the attention-
assisted pix2pix GAN model. The generator Gθ in the
pix2pix model aims to reconstruct high-quality Gθ(x),
which approximates the reference [T ]0 image y. The
discriminator network Dφ is taken to guide the Gθ
through the adversarial training.

Fig. 2. The flowchart of the learning-based T-matrix method. The
input image x is consisted of raw zero-order T-matrix coefficient [T ]0
constructed by BP, while the generated Gθ(x) aims to approximate
the reference [T ]0 denoted as y. The mapping is learned under the
framework of conditional generative adversarial networks, where the
input x is taken as the condition in the input of discriminator Dφ.

1) Fast reconstruction of coarse [T ]0 image x: To guar-
antee the speed of the whole method, in this paper, the
BP method [1], [32] is taken to reconstruct the rough
image x of [T ]0. The details are described as below.

First, we assume that the full amplitude vector of
induced multipole ā satisfies ā = γ ·( ¯̄Ψ t)H ·Ēsca, where the
superscript H denotes the conjugate transpose operation,
and γ is the unknown complex scaling coefficient.
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The complex γ can be explicitly obtained through
minimizing the following objective function

F(γ) = ||Ēsca − ¯̄Ψ t ·γ · ( ¯̄Ψ t)H · Ēsca||22, (8)

where we can get

γ =

〈
Ēsca, ¯̄Ψ t ·

(
( ¯̄Ψ t)H ·Esca

)〉
S∥∥∥∥ ¯̄Ψ t ·

(
( ¯̄Ψ t)H ·Esca

)∥∥∥∥
S

. (9)

Here 〈·, ·〉S denotes the inner product of two vectors on
the measurement circle S.

After getting ā, we further obtain vector b̄ as b̄ = ē− ¯̄A·ā.
The above process is repeated for all Ni incident waves.

Finally, taking into account of the relation ā = ¯̄O · b̄, we
can get the diagonal vector Ō of ¯̄O as the solution of a
least-squares problem

Ō =
(∑Ni

p=1
{ā}p � {b̄}∗p

)
�
(∑Ni

p=1
{b̄}p � {b̄}∗p

)
, (10)

where {·}p indicates the vector ā or b̄ corresponding to
the pth incidence, � indicates the element-wise product,
� represents the element-wise division, and (·)∗ is the
conjugate operation of the complex vector (·). The rough
input image x of [T ]0 can then be obtained by reshaping
Ō in Eq.(10).

2) The spatial-attention-assisted pix2pix network: In
this paper, the generator Gθ is taken as the attention
U-net [30] as shown in Fig. 3. The rough image x of [T ]0
is decomposed as the real and imaginary parts that serve
as the input of the generator.

It can be seen in Fig. 3 that the attention U-net
architecture consists of three branches. The encoding
branch on the left is to extract different levels of feature
maps, while the decoding branch on the right is to
reconstruct the image through deconvolutions of cor-
responding features. Besides, the spatial attention gate
(AG) module is used to guard the output features of the
encoder, which generates a gating signal g to control the
importance of features at different spatial locations. The
use of the spatial AG module can highlight the feature
learning on scatterers for the generator network, which
helps to improve the quality of the reconstruction.

The AG module for the lth layer in Fig. 3 generates a
weight map αli as

qlatt = ψt(σ1(W t
xx
l
i +W t

ggi + bg )) + bψ (11)

αli = σ2(qlatt(x
l
i , gi ;Θatt)) (12)

where Wx,Wg and ψ are linear transformation vectors,
bψ and bg are bias terms, t denotes the transpose, Θatt
represents the set of all unknown parameters of AG
including {Wx,Wg ,ψ,bψ ,bg }, σ1(z) = max(0, z) is the recti-
fied linear unit activation function, and σ2(z) = 1

1+exp(−z)
is the sigmoid activation function. xli represents the
feature vector corresponding to the ith spatial position
of the lth layer of the encoder, while gi represents the
gate signal at the same spatial position. The output of

Fig. 3. The structure of the attention-assisted generator.

AG x̂li is the element-wise multiplication of the input
feature-maps xli and attention coefficients αli :

x̂li = xli �α
l
i . (13)

The discriminator network Dφ is illustrated in Fig.
4. The goal of Dφ is to distinguish the reconstructed
image Gθ(x) from the real image y. The input of Dφ is
the reconstructed image Gθ(x) or the real target image
y, conditioned by the rough input image x. The output
of Dφ is a feature discrimination matrix defined on the
patches of inputs [29].

Fig. 4. The structure of the discriminator.

3) The loss functions: The loss function of generator
Gθ is defined as (14)

LG(θ) = αL1(θ) +LA(θ|φ), (14)

where L1(θ) denotes the pixel-wise loss between the
reconstructed image and the reference one, LA(θ|φ) indi-
cates the adversarial loss with fixed φ, and α is a weigh-
ing parameter to balance the two losses. Particularly, the
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L1(θ) and LA(θ|φ) losses are defined as

L1(θ) =
1
N

 N∑
i=1

‖Gθ(xi)− yi‖1

 (15)

LA(θ|φ) =
1
N

N∑
i=1

(
Dφ(Gθ(xi))− 1

)2
, (16)

respectively, where N indicates the batch size and ‖ · ‖1
represents the l1 norm.

The loss function of discriminator Dφ is

LD (φ|θ) =
1

2N

N∑
i=1

(
(Dφ(yi)− 1)2 + (Dφ(Gθ(xi)))

2
)
, (17)

where φ is the unknown parameter tensor and θ is fixed.
Since Gθ and Dφ are optimized alternatively, the pa-

rameter tensor of one network is fixed when we update
the other one. The two neural networks will be trained
in an adversarial way until reaching a Nash-equilibrium.

4) Balancing treatment of [T ]0 for hybrid scatterers:
According to definitions in Eqs. (2) and (3), the [T ]0 of
dielectric and PEC scatterers have quite distinct magni-
tudes, where the [T ]0 of the dielectric scatterer is much
smaller than that of the PEC one. To avoid that the
training model is biased towards PEC type scatterers, we
propose to scale the [T ]0 of PEC scatterers to a similar
magnitude as the dielectric one.

It is noted that the scaling is only implemented on the
reference image y in the training data set that contains
PEC scatterers. First, the PEC and dielectric scatterers in
the reference images of the training set are both repre-
sented as the true T-matrix coefficient [T ]0. The [T ]0 of
true PEC scatterers is then scaled to a similar magnitude
as the dielectric one. In contrast, the rough BP input
image of [T ]0 retains its original scale, since it is difficult
to distinguish the PEC scatterer from the dielectric one
by the raw input BP image in the testing phase. However,
we can easily identify the PEC scatterers after we get the
inversion results of Gθ(x). The true magnitude of [T ]0 for
PEC scatterers can then be recovered with the known
scaling coefficient. The above balancing treatment eases
the difficulty of training the network and more details
about the scaling are given as below.

Since the magnitudes of [T ]0 for dielectric
and PEC scatterers are both dominated by their
imaginary parts, we first calculate the ratio of
imag([T ]0,P EC)/imag([T ]0,diel), where imag([T ]0,diel)
indicates the imaginary part of dielectric [T ]0 calculated
by the relative permittivity εr appearing the highest
frequency in the training data set. Finally, we search for
the best scaling coefficient C near this ratio.

After C is obtained, the [T ]0 of PEC scatterers will be
divided by C if there are PEC scatterers in each reference
image y. The balancing treatment is done for all samples
with PEC scatterers, even for the sample with only PEC
scatterers. The reason is that there exists four different
combinations of scatterers in the training data set. The

Fig. 5. The training and validation loss curves of the proposed Att-
GAN method. The left one is the adversarial loss and the validation
loss defined by 1-SSIM, while the right one is the L1 loss and the
validation loss defined by RMSE.

reference images {y} of all training samples are expected
to maintain similar magnitudes after processing.

In testing, the original input image x is still taken
to get the reconstructed Gθ(x), which approximates the
normalized reference image y. We first identify whether
there exists PEC scatterers in Gθ(x) according to the
property of [T ]0 as described in Section II-A. If so, the
[T ]0 of PEC scatterers will be multiplied by the same C
as the training set to retrieve the original [T ]0. The above
balancing treatment on [T ]0 is expected to enhance the
performance to reconstruct hybrid scatterers. And we
will verify it through the experimental study.

III. Numerical and experimental results

In this section, we verify the effectiveness of the pro-
posed algorithm (denoted as “Att-GAN”) with both syn-
thetic and experimental data. To prove the generalization
capability, we will test the trained model for both the
within-database case and the cross-database case. And
the performance of the proposed method is compared
with the SOM formulated by T-matrix [7], [15].

A. Implementation details
The Modified National Institute of Standards and

Technology (MNIST) [33] data set is taken to train the
model for all examples. Besides, a random circle is also
incorporated into each digit to improve the model gener-
alization capability [26]. Each digit is randomly rotated
with an angle between −170◦ and 170◦ to account for
the spatial diversity of scatterers. The digit and circle
are randomly set to be dielectric or PEC. Therefore,
there are four possible scatterer combinations in each
sample. The training data set includes 9000 samples
generated from MNIST. Another 1000 samples are taken
as the validation data set. All dielectric scatterers are
assumed to be lossless, and the relative permittivity of
the dielectric scatterers is randomly distributed between
1.1-2.5.

The first two examples are synthetic ones, while the
last example is based on experimental data provided
by Institut Fresnel [34]. The configurations of synthetic
examples are as follows. The operating frequency is
set to 300MHz, and the background medium is free
space. The DOI D is chosen as a square domain with
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Fig. 6. Reconstruction results of Test#1 to Test#4 from the MNIST data set under 10% white Gaussian noise.

Table I
Comparison of quality metrics for reconstruction results of testing samples from MNIST data set

Test SOM Att-GAN
Eεr ,diel Epec Ediel SSIM Eεr ,diel Epec Ediel SSIM

#1 / 0.5348 / 0.4167 / 0.1273 / 0.9745
#2 0.3507 0.5358 0.1344 0.4110 0.0993 0.0941 0.0628 0.9685
#3 0.1745 0.4589 0.0482 0.6511 0.1108 0.0655 0.0287 0.9459
#4 0.1264 / 0.0406 0.6912 0.1216 / 0.0304 0.9628

2500 MNIST 0.3132 0.5114 0.1305 0.4378 0.1611 0.1628 0.0750 0.9107

the size of 4.0m×4.0m. There are 16 transmitters and
32 receivers located uniformly over the circle at the
radius R = 5.0m. D is discretized into 64 × 64 grids to
calculate the scattered field by the T-matrix method,
while the grids for reconstruction are set to 24 × 24
to avoid the inverse crime. The scattered field used in
training is noiseless for all examples, and 10% white
Gaussian noise is added to the scattered fields in testing
of synthetic data. According to the above discretization
and frequency configurations, the scaling coefficient C
is set to 8.0 in synthetic examples. The configurations of
the experimental example are similar as above and the
difference will be given later in Section III-E.

The Adam optimization method is taken to optimize
the attention-assisted pix2pix networks. The generator
and discriminator are optimized alternatively during
the training process. The updating algorithm of the
generator and discriminator is quite similar as that in
[35]. The hyperparameters of training process are set as
follows. The exponential decay rates are taken as β1 = 0.9
and β2 = 0.999, respectively. The batch size is set to
1 and totally 40 epochs are done in the training. The
initial learning rate is set to 0.0002, and it sequentially
decreases to zero from the 21st to the last epoch. The
weight parameter α which balances the L1 loss and LA
loss is set to 100. All network training and testing are
done on a workstation (Intel(R) Core(TM) i9-10900X
CPU with 128 GB RAM, and GeForce GTX 1080Ti GPU).
It takes about 6 hours to train the proposed model with
the above training set.

The training losses in different epochs and the vali-
dation results are shown in Fig. 5. It is observed that
both validation losses reduce smoothly during training
and there is no overfitting and underfitting phenomena.
After training, we finally chose the testing model as the
one with the best SSIM validation loss.

The comparison SOM method is implemented with
the T-matrix formulation truncated by the first order
multipoles, so as to model the scattering of hybrid
scatterers accurately [15]. The results of SOM with zero-
order multipole truncation are taken as initials. The
dimension of signal subspace in SOM is set to 10 and
the total number of iterations is set to 100.

For visualization of reconstruction results, we repre-
sent all scatterers as “dielectric” ones, where the PEC
scatterers are denoted with εr = 0 to mark their shapes
and locations. Note that here this practice is only done
to distinguish PEC from dielectric scatterers visually.

B. The quality metrics

In this part, we will define quality metrics to evaluate
the accuracy of reconstruction algorithms. Considering
the magnitude difference of PEC and dielectric scatter-
ers, we define the relative errors of PEC and dielectric
scatterers separately, through dividing the reference pro-
file into two parts. The root-mean-square error (RMSE)
for PEC scatterer is defined by the [T ]0 on PEC scatterer
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Fig. 7. Reconstruction results of “Austria” profiles with the relative permittivity of εr as 1.5. Test#5 to Test#8 are obtained with additional 10%
Gaussian noise.

Table II
Comparison of quality metrics for reconstruction results of “Austria” profile with εr = 1.5 in Fig. 7

Test SOM Att-GAN
Eεr ,diel Epec Ediel SSIM Eεr ,diel Epec Ediel SSIM

#5 / 0.5430 / 0.2188 / 0.1341 / 0.9566
#6 0.1806 0.4864 0.0568 0.4685 0.2654 0.1823 0.0784 0.7379
#7 0.1453 0.5328 0.0404 0.3353 0.2093 0.2411 0.0521 0.8689
#8 0.0586 / 0.0198 0.8425 0.1004 / 0.0250 0.9399

Table III
Comparison of quality metrics for reconstruction results of “Austria” profile with εr = 2.0 in Fig. 8

Test SOM Att-GAN
Eεr ,diel Epec Ediel SSIM Eεr ,diel Epec Ediel SSIM

#9 0.5991 0.4992 0.2109 0.1527 0.2122 0.6329 0.0850 0.7209
#10 0.4259 0.5439 0.1604 0.1651 0.1782 0.1819 0.0766 0.9095
#11 0.5238 / 0.1976 0.1091 0.1453 / 0.0553 0.8750

only,

Epec =

√√
1
Npec

∑
(p,q)∈IP

(
T
ref
i;p,q − T

rec
i;p,q

)2
(18)

where IP indicates the set of indices that belong to
PEC scatterers in each reconstructed image, T reci;p,q and

T
ref
i;p,q are the [T ]0 of the ith reconstructed and reference

PEC scatterers, respectively, and Npec is the total number
of small subunits in IP where only the PEC scatterers
distribute.

Similarly, we define the RMSE of [T ]0 only on the
dielectric scatterers as following,

Ediel =

√√
1

Ndiel

∑
(m,n)∈ID

(
T
ref
j;m,n − T

rec
j;m,n

)2
(19)

where ID indicates the set of indices that belong to
dielectric scatterers in each reconstructed image, T recj;m,n

and T
ref
j;m,n are the jth reconstructed and reference [T ]0

of dielectric scatterers, respectively, and Ndiel is the total
number of small subunits in ID occupied by dielectric
scatterers.

For dielectric scatterers, we also consider the relative
error of εr as,

Eεr ,diel =

√√√√√
1

Ndiel

∑
(m,n)∈ID

∣∣∣∣∣∣∣ε
ref
r;m,n
− εrec

r;m,n

εref
r;m,n

∣∣∣∣∣∣∣
2

(20)

where εrec
r;m,n

and εref
r;m,n

are the reconstructed and reference
relative permittivity of the dielectric scatterers, respec-
tively.

Finally, in order to evaluate the overall image quality,
we also define the structural similarity index (SSIM)
between the reference and the reconstructed T-matrix
coefficients over the whole DOI. The SSIM is one of the
most commonly used perceptual similarity metrics to
describe visual structural similarity of two images. More
details about the calculation of SSIM can be referred to
[36], [37].

C. Test With MNIST Data
In the first example, we test the trained model with

another 2500 images randomly selected in the MNIST
data set, where 10% white Gaussian noise are added to
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Fig. 8. Reconstruction results of “Austria” profiles with εr = 2.0 under
10% white Gaussian noise.

scattered field. We also compare the performance of the
proposed method with the SOM method.

The evaluation metrics for all testing samples are
summarized in Table I. It is seen that the proposed
method achieves quite satisfactory results for the overall
2500 samples with different types of scatterers. Besides,
the reconstruction results of four typical cases, Test#1 to
Test#4 which include different combinations of scatter-
ers, are demonstrated in Fig. 6. With reference to the
ground truth (GT) images, we observe that the SOM
method only achieves a good result in Test#4, and the
scatterers in the other tests cannot be clearly identified.
In comparison, the reconstructions of Att-GAN clearly
outperform that of SOM for all the four tests. It proves
the capability of the proposed Att-GAN for dealing with
ISP with mixed BCs in a unified framework. Particularly,
only less than 1 second is taken for reconstructing
images using the trained networks. In comparison, the
SOM method takes a few seconds to reconstruct a single
case. Similar calculation time is also observed for the two
methods in subsequent examples.

D. Test With “Austria” Data

In the second example, we verify the generalization
capability of the Att-GAN model using the well-known
“Austria” profile [38], where the relative permittivity
εr of the dielectric scatterers is 1.5 and 2, respectively.
Meanwhile, 10% white Gaussian noise is added to the
scattered field. In this example, we take the same train-
ing model as the first example to reconstruct the scat-
terers.

The reconstruction results for the “Austria” profile
with the εr = 1.5 are shown in Fig.7. Similar to that of the
first example, four different scatterer combinations are
studied in Test#5 to Test#8, respectively. In detail, Test#5
is a case of pure PEC scatterers, while Test#8 is a case
of pure dielectric scatterers. In contrast, the two disks
in Test#6 are PEC and the ring is dielectric. The types
of scatterers in Test#7 are completely opposite to that of

Fig. 9. The “FoamMetExt” profile from Fresnel experimental data.

Test#6. Corresponding to Fig.7, the quality metrics for
Test#5 to Test#8 are listed in Table II. We can observe
that the proposed Att-GAN well reconstructs different
types of scatterers in a unified way. In comparison,
the SOM only works well in Test#8 to reconstruct the
dielectric scatterers.

Besides, we further increase the εr of dielectric scatter-
ers in Fig.7 to 2.0 and maintain the other configurations.
The reconstruction results are shown in Fig.8, while
the corresponding quality metrics are summarized in
Table III. In Fig.8, Test#11 is a case of pure dielectric
scatterers. The two disks in Test#9 are PEC and the ring
is dielectric, while the types of scatterers in Test#10
are completely opposite to that of Test#9. We observe
that the results of SOM method are distorted for all
cases including the pure dielectric one. Compared to the
SOM result in Test#8 with εr = 1.5, the result in Test
#11 with εr = 2.0 converges to a local minimum due to
the high nonlinearity. Although the SOM result may be
improved by adjusting the initials in this example, we
will not discuss it here since it is out of the scope of
this paper. In contrast to SOM, the proposed method
still gets satisfactory results for all examples. The above
reconstruction results of “Austria” profiles show that the
Att-GAN consistently outperforms the SOM method. It
proves that the trained model of Att-GAN maintains a
good generalization capability to challenging examples.

E. Test With Experimental Data

Finally, we verify the proposed method with the ex-
perimental data measured by Institue Fresnel [34]. As
shown in Fig. 9, the “FoamMetExt” profile consists of a
dielectric cylinder and a metallic one, where the blue
foam cylinder has a diameter of 80mm with εr as
1.45± 0.15, and the grey copper tube has a diameter of
28.5mm. There are 18 transmitters evenly distributed
around the circle with a radius of 1.67m. For each
illumination, there are 241 receivers located at a distance
of 1.67m from the origin.

In this example, we take the same configurations as
those in Section III-A to prepare the training set, except
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Fig. 10. Reconstruction results of “FoamMetExt” profiles at (a) 3GHz (b) 4GHz (c) 5GHz and (d) 6GHz. It is noted that the dashed lines denote
the exact boundaries of cylinders in Fig.9.

Table IV
Comparison of quality metrics for reconstruction results of

“FoamMetExt” experimental data in Fig.10.

Freq. Method Eεr ,diel Epec Ediel SSIM

3GHz
SOM 0.1732 0.4730 0.0066 0.8395
U-net 0.1832 0.1939 0.0058 0.9555
GAN 0.1792 0.2283 0.0058 0.9433
Att-GAN-wb 0.1760 0.1451 0.0057 0.9584
Att-GAN 0.1718 0.1005 0.0055 0.9788

4GHz
SOM 0.1479 0.4672 0.0099 0.8430
U-net 0.1345 0.4117 0.0076 0.8895
GAN 0.1369 0.3697 0.0077 0.9034
Att-GAN-wb 0.1390 0.2818 0.0081 0.9082
Att-GAN 0.1264 0.3320 0.0072 0.9186

5GHz
SOM 0.1176 0.4067 0.0130 0.8485
U-net 0.0482 0.3365 0.0043 0.9316
GAN 0.0653 0.3244 0.0061 0.9318
Att-GAN-wb 0.0432 0.2805 0.0040 0.9219
Att-GAN 0.0339 0.2965 0.0032 0.9446

6GHz
SOM 0.1055 0.4148 0.0167 0.8364
U-net 0.0402 0.4007 0.0058 0.9041
GAN 0.0653 0.3245 0.0086 0.9221
Att-GAN-wb 0.0879 0.2968 0.0119 0.9168
Att-GAN 0.0356 0.3349 0.0048 0.9247

that the frequency changes from 300MHz to 3GHz,
4GHz, 5GHz and 6GHz, respectively, and the size of
DOI changes from 4.0m × 4.0m to 0.15m × 0.15m.
Besides, the scaling coefficient C is also set to 20, 20, 15
and 5, respectively, to be consistent with the frequency
change for the training data set. We not only compare the
performance of Att-GAN and SOM, but also check the

effectiveness of the attention module and the balancing
treatment on T-matrix coefficient [T ]0. Accordingly, the
pix2pix network without attention mechanism is de-
noted as ‘GAN’, while the Att-GAN without balancing
treatment is represented as “Att-GAN-wb”. Finally, the
typical U-net method is also compared to demonstrate
the benefit of the proposed method. The comparison
results of all methods under different frequencies are
presented in Fig. 10, and the corresponding quality
metrics are listed in Table IV.

It can be seen that the Att-GAN method achieves
overall the best performance compared to other meth-
ods. In detail, compared to the GAN method, the SSIM
is clearly improved, and the quality metrics defined
on scatterers have also been improved in general. It
indicates that the use of the attention mechanism can
enforce the network to learn features concentrating to
scatterers, thereby enhancing the reconstruction qual-
ity. Meanwhile, compared to Att-GAN-wb, we observe
that the imaging quality has been improved after the
balancing treatment for all the cases, especially for the
dielectric scatterers. But we also observe that the RMSE
of PEC scatterers under 4GHz, 5GHz and 6GHz is a
little worse after balancing. The reason is that the scaling
on [T ]0 of PEC will highlight the dielectric scatterers,
which brings improvements in reconstruction of dielec-
tric scatterers. In contrast, a certain decline for the
reconstruction of PEC may appear. However, the overall
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SSIM of all cases is improved, which is also verified
visually from the results in Fig. 10. It is noted that the
attention mechanism has little influence on the training
loss curves. But it can highlight the learning of features
by the generator on the unknown scatterers instead of
backgrounds, which effectively improves the quality of
reconstruction. Finally, the results in Fig. 10 and Table
IV also verify that the Att-GAN method achieves better
reconstruction results compared to the typical U-net
method with only pixel-wise loss.

Although not shown here, the proposed method has
also been compared with other typical physics-inspired
methods [20], [26] for inversion of pure dielectric scat-
terers. The Att-GAN achieves similar results compared
to those approaches. It shows that the proposed method
can also well invert pure dielectric scatterers like those
conventional methods. But the advantage of the Att-GAN
method is that it can invert ISPs with mixed boundaries.

IV. Conclusion

In this paper, we proposed a unified learning-based
method to reconstruct scatterers with mixed BCs. The
zero-order T-matrix coefficients of scatterers, instead of
the commonly used relative permittivity, have been re-
constructed by the attention-assisted pix2pix GAN, with-
out knowing the type of scatterers in advance. The re-
construction of only [T ]0 greatly accelerates the imaging
speed compared to conventional iterative SOM method.
Meanwhile, the introduction of the spatial attention
mechanism under the pix2pix GAN framework, as well
as the balancing treatment on [T ]0 of PEC and dielec-
tric scatterers, guarantees a high-quality reconstruction.
Test results on both synthetic and experimental data
have validated the superior performance of the pro-
posed method, which effectively expands the application
scope of learning-based approaches for solving ISPs with
mixed BCs.
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