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Abstract—The end-to-end scalable cascaded convolutional neu-
ral networks (SC-CNNs) are proposed to solve inverse scattering
problems (ISPs) and the high-resolution image can be directly
obtained from the scattered field with the guiding by multi-
resolution labels in the cascaded blocks. To alleviate the difficulty
of solving the ISPs via a full-wave way, the proposed SC-
CNNs are physically decomposed into two parts, i.e., the linear
transformation and the multi-resolution imaging networks. The
first part is composed of one CNN block and is used to mimic the
linear transformation (e.g., back propagation, BP) from scattered
field to the preliminary image. Whereas, the second part consists
of a few cascaded CNN blocks to realize the reconstruction
from the rough image to high-resolution image. With more high-
frequency components incorporating into the multi-resolution
labels, the cascaded networks can be guided through those
labels, avoiding black-box operations and enhancing the physical
meaning and interpretability. The proposed SC-CNNs are verified
by both the synthetic and experimental examples and it is
proven that better performance can be achieved in terms of both
inversion accuracy and efficiency compared to the BP-Unet and
direct inversion scheme (DIS).

Index Terms—End-to-end, full-wave inversion, scalable cascad-
ed convolutional neural networks (SC-CNNs), multi-resolution
label.

I. INTRODUCTION

INVERSE scattering problems (ISPs) are a type of quanti-
tative microwave imaging method, which is essentially to

obtain the size, position, shape and constitutive parameters,
such as the relative permittivity and the conductivity, by use
of the measured scattered field. It is now widely reported in
various fields, such as through-wall imaging [1], [2], remote
sensing [3], bio-medical imaging [4] and so on [5], [6].
Whereas, owing to the inherent multiple scattering and the
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limit measurement data, there are still two major challenges
in ISPs: nonlinearity and ill-posedness. Consequently, lots of
reconstruction methods have been proposed to alleviate these
two problems according to the physical models.

Reconstruction methods can be classified into iterative
methods and non-iterative methods. Subspace optimization
method (SOM) [7]–[9], contrast source inversion method (CSI)
[10]–[12], distorted Born iterative method (DBIM) [13], and
some other Newton typed methods [14], [15] are classical iter-
ative nonlinear optimization methods. Although these methods
have strong capability to solve the ISPs in a wide range of
applications, they are still time-consuming, especially for the
three-dimensional (3-D) ISPs. Non-iterative methods contain
Born approximation inversion method [16], the back propaga-
tion (BP) method [17], linear sampling method (LSM) [18],
direct sampling method (DSM) [19], etc. These methods trans-
form nonlinear problems into some linear problems based on
the Born approximation, which can reduce the computational
cost and source due to high computational complexity. But the
results obtained from non-iterative approaches usually result
in the failure reconstruction especially for the strong scatterers
(those with high contrast and electrically large dimension).
Therefore, traditional inversion methods are hard to meet the
requirement on both the reconstruction accuracy and the real-
time implementation.

In order to tradeoff the computational cost and the re-
construction accuracy, some machine learning-based inversion
methods are presented [20], [21]. Inspired by the powerful
representation capabilities of deep neural networks (DNN)
[22], the neural networks are used to build a nonlinear mapping
between the scattered field and the unknown constitutive
parameters of scatterers. And the deep learning-based inver-
sion methods can be generally divided into two categories.
One is using neural networks to fulfill the image-to-image
mapping, in which the input images can be obtained from
some non-iterative fast methods [23]–[25]. These non-iterative
approaches are used to transform the measured scattered field
into coarse profiles along with low-frequency components and
extract prior physical information in advance. The purpose of
the neural networks is to restore the high-frequency compo-
nents of the profile with the aid of the rough input profile,
which significantly reduces the afford of the networks in direct
inversion scheme (DIS) [24] with the input of the scattered
field. However, the inversion accuracy of these methods are
highly depending on the quality of input images. If the input
image is close to the reference one, it is expected to get
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good reconstruction. Otherwise, if the mapping between the
rough input and the reference image is quite complicated, it
may distort the results and the generalization capability of
the deep model. The other type aims to replace some key
operators (usually with the large amount of computations) in
nonlinear iterative methods with the trained neural networks
to accelerate the inversion. For example, in [27], they use
deep neural network (DNN) to train the most time-consuming
gradient, rather than retrieving high-resolution image directly.
The full inversion is still following an iterative framework and
has better generalization capability compared to the first type
methods. But the computational cost is usually high, especially
for 3-D ISPs, since the method is still iterative.

Although the results of existing machine learning-based
inversion are encouraging, researchers also have tried efforts to
achieve end-to-end approaches [24], [28], in which the neural
network is taken to directly build a mapping between input and
output profiles. In virtue of one cost function in the network,
the problem can be solved in one step and the computational
complexity is also reduced to some extent. However, most of
the end-to-end networks are like a black-box method, in which
the contribution of each part is unknown. And the underlying
wave physics is almost lost such that the generalization ability
is weaken significantly. For example, DIS mentioned in [24]
can only reconstruct some simple scatterers in the range of
training set and edges of the reconstructed profiles are blurred.

To alleviate this problem, in [29], the mapping from the
scattered field to the targets is directly divided into two steps,
i.e., the first step is to get a rough input and the second
step is to obtain a high-resolution image (e.g, high-resolution
herein is compared to the results got by BP) and the labels
for two networks are the ground truth. The physical insight is
not well embodied in the network. Inspired by the cascaded
CNN in [30], in this paper, multi-resolution labels in the
scalable cascaded convolutional neural networks (SC-CNNs)
are used to gradually guide the inversion. Different from the
work of implementing the induced current mapping in [30],
a direct inversion from the scattered field to the images in
one step is achieved by the proposed SC-CNNs. With the
cascaded networks, the entire physical model is established
step by step and by the guiding of the intermediate labels
and the network is made more easily to learn the underlying
relationship between labels. And the contribution of each block
is controlled by the corresponding weight coefficient in the
loss functions.

The cascaded network mainly contains two parts. The first
part of the network is to realize the mapping of the scattered
field to a rough intermediate image (such as the results of the
BP), and the second part gradually realizes the process from
the rough intermediate image to final high-resolution image.
More and more high-frequency components are retrieved by
the cascaded network in the second part. Herein, the cost
function is a sum of the weighted pixel-wise mean squared
error (MSE) and the multi-resolution labels are used to guide
the image reconstruction process. In the inversion, the results
of BP are taken as the first intermediate label considering
that the mapping between the scattered field and the BP
image is linear which is easy to be approximated through

Fig. 1. Schematic diagram of inverse scattering problems.

neural networks. Consequently, the proposed method converts
a complicated nonlinear mapping into a composite of a several
simple mappings, through the use of multi-label learning,
which not only reduces the difficulty of training, but also
enhances the physical meaning and interpretability of the
network. The contributions of this paper are summarized as
follows:

1. The end-to-end scalable cascaded convolutional neural
networks (SC-CNNs) are proposed to build a mapping be-
tween the scattered field and the final output image. Multiple-
resolution labels are used to guide the reconstruction process.
The proposed SC-CNNs restrict the physical meaning of the
hidden layers of the network, which is explicitly constrained
as that the characteristics that the network needs to learn.
Specifically, the result of BP is taken as the label of the first
block of neural network such that it can well learn the linear
relationship between the label and the scattered field. Later,
with more high-frequency components incorporating into the
multi-resolution labels, the guiding of cascaded network can
avoid black-box operations and enhance the physical meaning
and interpretability of the neural network. The high-resolution
reconstruction image and better generalization ability can be
finally achieved.

2. The proposed approach can achieve better performance
in terms of the accuracy and efficiency compared to both of
the direct inversion scheme (DIS) and the BP-Unet in [24],
[26].

3. According to the difficulties of the problems to be solved,
the second part of the SC-CNNs can be scaled and we can
add or reduce the corresponding number of blocks according
to the complexity of the imaging targets, thereby obtaining
better results than the existing BP-Unet.

The structure of this paper is arranged as follows: in Section
II, formulation of the problem is presented. In Section III,
the cascaded network is proposed, including its structure and
label generation. We show the test results of numerical and
experimental data in Section IV, and at last, in Section V, we
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will give a summary of this paper.
It is worth noting that we use ¯̄X and X̄ to represent the

matrix and vector of the discretized operator or parameter
X, respectively. The superscripts H and * respectively means
conjugate transpose and complex conjugate of a matrix or
vector.

II. FORMULATION OF THE PROBLEM

Herein, a two-dimensional (2-D) ISPs with transverse-
magnetic (TM) polarization with time harmonic fields of
e(−iωt) (ω is the angular frequency) is considered. We il-
lustrate the problem with a 2-D example. The configuration
of 2-D ISPs is shown in Fig. 1, in which the scatterers are
located at the domain of interest (DoI) D in a homogeneous
background. The permittivity, permeability, and wavenumber
of the homogeneous background are denoted as ε0, µ0, and
k0 = ω

√
µ0ε0, respectively. There are Ni incident antennas

and Nr receiving antennas uniformly distributed around the
scatterers. The incident antennas are located at rip with p =
1, 2, ..., Ni, and they transmit the electromagnetic signals in
turn. And at the same time, all the receivers, located at rsp
with q = 1, 2, ..., Nr on the measurement domain S, collect
scattered field data together [31].

In the forward problem, it is to get the scattered field for
the known scatterers and the given incident fields. The inverse
problems are to reconstruct the constitutive parameters of the
unknown targets given a set of Nr × Ni scattering data. It
is well known, the Lippmann-Schwinger integral equation
describes the interaction of the scattering behavior, in the
following, the 2-D integral equations are used to build the
formulas. The total fields in the DoI can be calculated by,

Etot
p (r) = Einc

p (r) + k2
0

∫
D

G(r, r′)Ip(r′)dr′ r ∈ D (1)

where Etot
p (r) and Einc

p (r) are the total electric field and inci-
dent electric field at r, respectively and r′ denotes the position
of a source point. G(r, r′) = i

4H
1
0 (k0 |r− r′|) represents the

2-D Greens function in free space, where H1
0 (k0 |r− r′|) is

the first-kind zeroth-order Hankel function. Ip(r′) denotes the
contrast current source, which can be defined as,

Ip(r′) =
Jp(r′)

−iωε0
= χ(r′)Etot

p (r′) r′ ∈ D (2)

where Jp(r′) denotes as the physical induced current and the
contrast function can be written as χ(r′) = εr(r′) − 1. The
Eq. (1) is considered as the object equation.

The second equation is data equation, which is used to
derive the scattered field Esca

p (r) on the domain S, and it
is described as,

Esca
p (r) = k2

0

∫
D

G(r, r′)Ip(r′)dr′ r ∈ S (3)

In order to numerically solve ISPs, we use the method of
moment (MOM) with the pulse basis function and the delta
testing function to discretize the DoI D into M = M1 ×M2

rectangle subunits [32], and the centers of them are located
at r1, r2, , rM. The discretized formulas of object and data
equations are expressed as follows:

Ētot
p = Ēinc

p + ¯̄GD · Īp (4)

and
Ēsca

p = ¯̄GS · Īp (5)

The inverse problem herein is to obtain the constitutive pa-
rameters of unknown scatterers, i.e., χ with the scattered field
Ēsca

p on the measurement domain S and the corresponding
illumination fields according to Eqs. (4) and (5). It can be
viewed as a model-based optimization problem, and if we
define Ψ as the operator of solving forward problem, i.e.,
Ēsca

p = Ψ(χ), the cost function of the ISPs can be expressed
as [31],

min : f(χ) =

Ni∑
p=1

∥∥Ψ(χ)− Ēsca
p,mea

∥∥2
+ αR(χ) (6)

where Ēsca
p,mea is the measured scattered field data at the

pth incidence, R(χ) is a regularization term to restrict the
unknown parameters with some prior information and makes
the solution more stable and α is a weighting parameter
to balance the data fitting term and the regularization term.
Owing to small amount of measurement data and noise, the
above problems counter serious nonlinearity and ill-posedness.
BP-Unet mentioned in [24] is to solve the problems. The whole
method is divided into two steps, firstly, it obtains an initial
image through BP, and then the rough image is taken as the
input of the Unet-CNN network to get high-resolution image.
Although this approach can achieve good reconstructions, it
depends a lot on the initial rough image. Consequently, to
solve the problem of relying on the initial image and to
simplify the imaging procedure, a new end-to-end method is
proposed in the following.

III. SCALABLE CASCADED CONVOLUTIONAL NEURAL
NETWORKS

In this paper, end-to-end scalable cascaded convolutional
neural networks (SC-CNNs) are proposed to directly get the
contrast function from the measured scattered field, e.g., Esca

p .
The configuration of this cascaded network is depicted in
Fig. 2. The network mainly consists of two parts, and the
first part consists of only one block (e.g., one piece of Unet-
CNN) which is used to realize the linear manipulation from
the scattered field Esca

p to a rough image, while the second
part is composed of an indeterminate number of blocks to
achieve the high-resolution imaging from the rough profiles
with low-frequency components to the high-resolution image
ε
′

r. All blocks are trained together. Supposed that the cascaded
network model is denoted as Γ, and the whole process can be
described as,

ε
′

r = ΓΘ(Esca
p ) (7)

where Θ denotes the weight parameters of the SC-CNNs.
In order to alleviate the nonlinearity of ISPs, multiple Unet-

CNN blocks are cascaded to guide the nonlinear relationship,
and each block has its own label. With the processing of the
SC-CNNs, more high-frequency components are included in
the corresponding labels of the blocks and the final label is
the ground truth.

To gradually achieve the representation of nonlinearity
owing to multiple scattering effects, the results of some linear
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Fig. 2. The proposed end-to-end cascaded network consists of two parts, the first part uses block1 while the second part uses block2, block3, ..., the input
is the scattered field generated by MOM and the output is the high-resolution image, output1, output2, output3, ..., output N is the output of each block.

reconstruction methods like BP are taken as the label of
block1. Actually, block1 is to fulfill the linear transformation
from the scattered field to the preliminary images. In the
subsequent networks, block2, block3, ..., are used to improve
the image resolution. Block1, block2, block3, ..., mainly refer
to simplified the Unet-CNN structure [26]. Although this
structure can’t perfectly map the scattered field to the ground-
truth (i.e. DIS) owing to high nonlinearity of ISPs, it is
validated that it can work well in mapping the scattered field
to BP image. They mainly contain 5×5 convolution, followed
by a batch normalization (BN) [33], a rectified linear unit
(ReLU). As for the structure of blocks in the second part,
fewer layers are used because several cascaded blocks would
be involved to achieve the image-to-iamge transformation. In
the training procedure, all blocks are trained together with a
unified weighted cost function. The fulfillment of the blocks
and the construction of the SC-CNNs will be described in
details in the following subsections.

A. Derivation of BP

Back propagation (BP) is a classical non-iterative inver-
sion method based on Born-approximation, which is a linear
method and widely used in the microwave imaging. Here, we
use the retrieval profile of this method as the label of the first
block. The implementation of BP is divided into three steps.
The first step is to calculate induced current Ī = γ · ¯̄GH

S · Ēsca

[17], [31]. A cost function F based on Eq. (6) can be defined
as,

F(γ) =
∥∥∥Ēsca − ¯̄GS · (γ · ¯̄GH

S · Ēsca)
∥∥∥2

(8)

Take the derivative of Eq. (8) with respect to the complex
constant γ, and make it equal to 0, and then γ can be got,

γ =

〈
Ēsca, ¯̄GS · ( ¯̄GH

S · Ēsca)
〉
S∥∥∥ ¯̄GS · ( ¯̄GH

S · Ēsca)
∥∥∥
S

(9)

where 〈A,B〉S represents the inner project of the A and B in
the domain S. The second step computes the total field in the

domain D by Eq. (4). After that, the contrast χBP (r) can be
calculated with the least squared method,

χBP (r) =

∑Ni

p=1 Īp(r) ·
[
Ētot

p (r)
]∗∑Ni

p=1

∥∥Ētot
p (r)

∥∥2 (10)

It can be seen from above steps of BP that the process from
the scattering field Esca to the contrast χBP is a linear process.
So, we can easily utilize the neural networks to achieve this
linear relationship in the first part, which is a significant step
in the SC-CNNs. That is to say, by taking the scattered field as
the input of a network, the rough image can be calculated with
the BP result as the training label. By this operation, several
advantages can be summarized as follows:

1. Through the first block to mimic the BP operation, the
scattered fields can be transformed into the preliminary images
guided by the results of BP in the training. And the physical
characteristics (e.g., the low-frequency components) can be
reserved by this operation. The remaining high frequency
components can be learned by the subsequent blocks guided
by the multiple resolution images. Due to multiple-resolution
labels, physical information from the scattered field can be
fully utilized in the end-to-end training.

2. If the results of BP algorithm are directly used as
the input into successive stages, the whole reconstruction
process is divided into two steps. Whereas the proposed SC-
CNNs achieve end-to-end mapping and make the inversion
more efficiently. if the output of BP is not good under the
conventional fixed BP process, it may also result in poor
reconstruction results for the final predicted results. Whereas
an end-to-end training with successive blocks would affect the
output of previous blocks, the proposed SC-CNNs can improve
the situation and make the inversion more flexible.

After getting the preliminary image by mimicking the BP
result with block1, the remaining task is to achieve image-to-
image transformation with different labels of various resolu-
tion.
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B. Derivation of Multiple-resolution Labels

In the whole SC-CNNs, the small Unet-CNN blocks will
increase as the degree of nonlinearity increases (or the dif-
ficulty of the ISPs). The number of the blocks after block1
depends on the difficulty of the ISPs. The more difficult the
problems you solve, the more number of the blocks should be
utilized in the SC-CNNs.

The first block of the SC-CNNs is to realize the process of
BP. It is noted that, the results (e.g., reconstructed permittivity)
by the BP is extremely close to the one in the background,
which is used as the label of the block1 in the SC-CNNs.
To distinguish the value of the permittivity of the target and
the homogeneous background evidently, the images got from
BP, e.g., εBP

r (r) is processed logarithmically as εr,1(r) =
log10(εBP ′

r (r)), and εBP ′

r (r) is formulated as,

εBP ′

r (r) =

{
εBP
r (r) , εBP

r (r) ≥ 1

1.0 , εBP
r (r) < 1

(11)

Therefore, the label of the first block is εr,1, while the label
of kth block in the second part is obtained by the following
equation,

εr,k(r) = ¯̄FH ·
[

¯̄MS ◦ ( ¯̄F · (εr(r)− εBP
r (r)))

]
+ εBP

r (r)

(12)
where ¯̄F represents the Fourier transform matrix, ◦ is
Hadamard product, ¯̄MS is a one-zero matrix where the center
part (low-frequency components) with the size of Mk ×Mk

is one and the rest of it is zero, εr,k stands for the label in
the kth block, k = 2, ..., N, and N is the total number of
blocks. εr is the relative permittivity of the training samples.
In the process of producing label of the subsequent blocks, Mk

gradually increases until ¯̄MS becomes a matrix of all ones
(e.g., Mk = M ). The label in the last block is the ground
truth. The labels (or the Mk) should be carefully designed
such that different labels in the various blocks can be well
differentiated and more and more high-frequency components
are used to constructed the label.
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Fig. 3. Four representative examples when four cascaded Unet-CNN blocks
are used, with (a) the label of the first block and the result of BP, (b) the label
of second block, (c) the label of the third block, (d) the label of the fourth
block and ground truth.

As shown in Fig. 3, four examples are used to depict the
effects of the multi-resolution labels in the SC-CNNs with four
Unet-CNN blocks. It is can be seen clearly that the resolution

of the label is improved as the number of labels increases. And
they are getting closer to ground truth. Therefore, besides the
first block for transforming the field data to image, the problem
is divided into more feasible operators corresponding to the
cascaded networks. The highly nonlinear relationship can be
achieved by the some gradually cascaded network, which
guides network orderly to learn the physical relationship.
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C. Cost Function of SC-CNNs

The SC-CNNs are composed of a series of Unet-CNN
blocks. For the convenience of representation, we define k
cascaded Unet-CNN blocks as SC-CNNk. For example, if you
have four blocks cascaded in the whole SC-CNNs as shown
in Fig. 3, it is denoted as SC-CNN4. The loss function Lk for
the kth block can be expressed as,

Lk =

M∑
e=1

(εr,k′ − εr,k)2, (13)

where εr,k′ and εr,k denote the output and label of the kth
block, respectively and M represents the total number of
elements. The loss function of the SC-CNNs is composed
of the cost functions in all blocks, which can be defined as
follows,

L =

N∑
k=1

(λk · Lk), (14)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)

y
(m
)

−1
−1

0

1

x(m)
0 1

1

2

3

x(m)
0 1

1

1.1

1.2

x(m)
0 1

1

1.1

1.2

x(m)
0 1

1

2

3

x(m)
0 1

1

2

3

x(m)
0 1

1

2

3

x(m)
0 1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1.1

1.2

1.3

x(m)

y
(m
)

−1 0 1
−1

0

1

1.1

1.2

1.3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.5

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.5

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

1.1

1.2

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

x(m)

y
(m
)

−1 0 1
−1

0

1

1

2

3

Test#1 Test#2 Test#3 Test#4 Test#5 Test#6

Ground

truth

BP

output1

BP-Unet

SC-CNN2

SC-CNN3

SC-CNN4

Fig. 5. The test results of example 1, 2 and 3 are shown here. Test#1 and Test#2 are example 1 with the relative permittivity between 1.5 to 2.5, Test#3
and Test#4 are example 2 with the relative permittivity between 2.5 to 3, Test#5 and Test#6 are example 3 with the relatively permittivity 3, output1 is the
output of block1, which is similar to the results of BP.

TABLE I
The weight parameters of the loss function for each network (X means there

is no such weight parameter)

λ1 λ2 λ3 λ4

SC-CNN2 10/5/2 20 X X

SC-CNN3 10/5/2 1 18 X

SC-CNN4 10/5/2 1 2 5

where λk is the weight coefficient of the cost functions at kth
block. And all blocks are trained together by this loss function,
every block is affected by the loss function on the blocks that
follow it.

In the whole process of high-resolution imaging, the contri-
bution of each block to the reconstruction results is different.
The importance of each block can be effectively controlled
by the weight parameters λk. To balance the loss function of
each block, we try to keep the different loss functions of all
blocks, i.e., λ1 * L1, λ2 * L2, , λn * Ln, in the same order of
magnitudes. Then, we maintain the weight of the first block
unchanged. The weights of the remaining blocks, as well as
the number of the blocks in the second part, could be adjusted
according to the testing performance on the validating set. The
training curve (red line) and validation curve (blue line) of SC-
CNN4 are shown in Fig. 4 (b), where they eventually converge
in similar trends and magnitudes.

D. Computational Complexity
For the proposed SC-CNNs, the computational expense

includes ReLU function, convolutions, batch normalization

0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

(a−1)

0.6 0.7 0.8 0.9
00

0.1

0.22

0.33

(a−2)

0.6 0.7 0.8 0.9
00

0.11

0.22

0.33

(a−3)

0.6 0.7 0.8 0.9
00

0.1

0.22

0.33

(a−4)(a−1)

0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

(b−1)

(a−2)

0.6 0.7 0.8 0.9
0

0.1

0.22

0.3

0.44

(b−2)

(a−3)

0.6 0.7 0.8 0.9
00

0.11

0.22

0.33

0.44

(b−3)
0.6 0.7 0.8 0.9

00

0.1

0.22

0.33

0.44

(b−4)(b−1)

0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

(c−1)

(b−2)

0.6 0.7 0.8 0.9
0

0.0.1

0.0.2

0.0.3

(c−2)

(b−3)

0.6 0.7 0.8 0.9
00

0.1

0.22

0.33

0.0.4444

(c−3)

(b−4)

0.6 0.7 0.8 0.9
00

0.11

0.22

0.0.0.3333

(c−4)

P
ro
b
a
b
il
it
y

P
ro
b
a
b
il
it
y

P
ro
b
a
b
il
it
y

SSIM

Fig. 6. Probability distribution of SSIM. (a-1) to (a-4) are BP-Unet, SC-
CNN2, SC-CNN3, and SC-CNN4 results of example 1, respectively. (b-1) to
(b-4) are BP-Unet, SC-CNN2, SC-CNN3, and SC-CNN4 results of example 2,
respectively. (c-1) to (c-4) are BP-Unet, SC-CNN2, SC-CNN3, and SC-CNN4

results of example 3, respectively.

TABLE II
The SSIM for BP-Unet, SC-CNNs of example 1, 2 and 3

Example1 Example2 Example3

BP-Unet 0.7964 0.8060 0.7956

SC-CNN2 0.8118 0.8124 0.8082

SC-CNN3 0.8173 0.8184 0.8158

SC-CNN4 0.8339 0.8170 0.8225
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and so on. The time-consuming cost one is the operations
of convolutions. If there are Qi input feature maps and Qo

output feature maps, the output feature map size is N1 ×N2

and the convolution kernel size is Kf × Kf (Kf = 3 and 5
in this paper, the size of the convolution kernel used in the
convolution is 5×5, and the size of the convolution kernel used
in the up-convolution is 3× 3. In the process of convolution,
a slightly larger convolution kernel is used to extract more
features.), thus the computational cost in the convolution layer
is O(N1N2K

2
fQiQo) [34]. And in addition to that, there is the

calculation of the BP, i.e., the label of block1, the computation
cost is mainly composed of the calculation of the operator
multiplication, i.e., GD(I) is the most complicated. The DoI D
is discretized into M = M1×M2 pixels, if Fast Fourier Trans-
formation (FFT) is applied in the matrix-vector multiplication,
the computation cost is O(NfM logM), where M logM is the
computation cost of matrix-vector multiplication with FFT in
each iteration of the forward solver, Nf denotes the number
of the iterations of the forward problem.

IV. NUMERICAL SIMULATION

In this section, both the synthetical data and experimental
data are presented to evaluate the proposed SC-CNNs in
Section III. The BP-Unet in [24], is used to compared with
the proposed method in terms of the inversion accuracy and
the computational cost.

A. Numerical Setup

In the training process, MNIST data set is used for the train-
ing set [35]. It is composed of ten digits from 0 to 9 written
by 250 different people and MNIST data set contains 70,000
images of handwritten digits. Herein, in order to increase the
richness of the training data, a cylinder with random size and
position is added into to the DoI with the profile from MNIST
data set. Besides, in order to make the data set as diverse as
possible, all samples are rotated arbitrarily from 0 to 360. The
relative permittivity of the samples is set between 1.5 and 2.5,
as shown in column 4 of Fig. 3. There are 10000 samples are
generated according to the avove requirements, of which 9000
ones are randomly selected for training, 500 samples are used
for validation and the rest is for testing.

In the forward problem, we discretize a DoI D into 64 ×
64 pixels with a size of 2 m × 2 m. 32 receiving antennas
and 16 incident antennas are placed evenly around a circle
with a radius of 3 m centered at (0, 0) m. The operating
frequency is 400 MHz. And then MoM is implemented to get
the scattered field data, e.g., ¯̄Esca, with the size of Nr ×Ni

, and there is no noised in the training data. To validate the
robustness of the inversion methods, the test data is added
white Gaussian noise ¯̄n and the noise is measured in terms
of (‖¯̄n‖ /

∥∥∥ ¯̄Esca
∥∥∥). For a more accurate evaluation of the

inversion profiles, the structural similarity (SSIM) metric is
used for the quantification. SSIM is a measure of the similarity
for two images, and it goes from 0 to +1. When two images
are exactly the same, it is equal to 1.

The hyperparameters for training procedure are set as fol-
lows: the Adam optimization algorithm is chosen to optimize

the proposed SC-CNNs, the exponential decay rate is set as
β1 = 0.9 and β2 = 0.99; learning rate is gradually decreased,
which is set as 1e-3, 1e-4, and 1e-5, respectively, in the first
30 epochs, between 30 and 60 epochs, and after 60 epochs;
batch size is set as 32, and the training is run with maximal
100 epochs. And the sever with Inter(R) Core(TM) i7-8700K
CPU, 32G RAM, and GeForce GTX 2080Ti GPU is used for
training and testing.

To investigate the numbers of Unet-CNN blocks needed in
the second part, the SC-CNNs with two, three, four cascaded
blocks are used in the training process, which are denoted
as SC-CNN2, SC-CNN3, SC-CNN4, respectively. Generally
speaking, the more difficul the ISPs you solve, the more
number of the blocks should be needed in the proposed SC-
CNNs. The weight parameters of loss functions for each block
in SC-CNN2, SC-CNN3, SC-CNN4 are shown in Table I,
respectively. The weight parameters set here remain the same
for all examples, and they change only when the number of
cascaded networks changes. In the SC-CNNs, blcok1 plays a
significant role in the transformation from the scattered field
to the images especially at the beginning of the training. So,
the weight parameter λ1 is gradually reduced, which follows
the exact strategy: λ1 is set as 10, 5, and 2 in the first 30
epochs, between 30 and 60 epochs, after 60 epochs. The loss
curves of SC-CNN2, SC-CNN3, SC-CNN4 for the training are
depicted in Fig. 4 (a), it is shown that all of them have good
convergence after 70 epochs. Also as seen from Fig. 4 (b),
both the loss curves of the training set and validation set can
keep stable after about 70 epochs.

B. Numerical Tests

In the example 1, the cascaded network is trained with SC-
CNN2, SC-CNN3, SC-CNN4 and BP-Unet, respectively. The
MNIST data set with random cylinder (similar to the training
set) is used for test and the relative permittivity is set between
1.5 and 2.5 with 20% added white Gaussian noises (AWGN)
into the synthetical field data.

As depicted in Test#1 and Test#2 in Fig. 5, the reconstruct-
ed profiles obtained by these four methods are good and there
are not much difference. The results by SC-CNNs methods
are a little better than the one by BP-Unet. Whereas, the
performance by increasing the number of cascaded networks is
not significantly improved. In the following, the same training
set in example 1 is used for example 2 and 3, but the relative
permittivities of the tested samples are larger than the one
in the training set. The profiles from MNIST data set and the
Letter data set are selected for the test of the example 2 and 3.
The Letter data set is composed of 26 handwritten letters of the
English alphabet and contains a total of 2860 samples. In the
example 2 and 3, the relative permittivities of the MNIST and
the Letter are set as the one from 2.5 to 3 and 3, respectively.
In the testing, both of the scattered field data is added with
5% AWGN. As known to all, when the relative permittivity
of unknown targets increases, the nonlinearity of the model is
also increased and the corresponding inversion become more
and more difficulty compared to the example 1. The retrieval
results are shown in Test#3-6 of Fig. 5.
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Fig. 7. Tests on “Austria” with the network trained by MNIST data set with a random cylinder. The ground truth in the first row, the relative permittivity
on the left is smaller than that on the right. The added noise in the scattering field of (a) and (c) are 5%, while 20% Gaussian noise are presented in the
scattered fields of (b) and (d).

It can be seen clearly, although the relative permittivities
are larger than the one in example 1, the reconstructed results
are still satisfactory. And the reconstructed results by the SC-
CNNs are much better than BP-Unet. The average SSIMs for
the reconstructed profiles by BP-Unet, SC-CNN2, SC-CNN3,
SC-CNN4 of example1, 2, and 3 are shown in Table II. And the
probability distribution of SSIM for the testing set are depicted
in Fig. 6. Both of Fig. 6 and the statistical SSIM in Table II
all validate that SC-CNNs inversion method can get better
reconstruction accuracy compared to the BP-Unet. And more
cascaded networks can improve the inversion performance if
the nonlinearity of the solved ISPs is higher.

However, both the test examples with the profiles from
MNIST and Letter data set are a little similar with the one
in the training set. To further verify the generalization ability
of the proposed methods, the benchmark testing profile, i.e.,
“Austria”, is tested in the example 4, which is much more
challenging than the previously mentioned examples. In this

TABLE III
The SSIM for BP-Unet, SC-CNNs of “Austria” profile

E4(a) E4(b) E4(c) E4(d)

BP-Unet 0.7313 0.7046 0.6659 0.6817

SC-CNN2 0.7661 0.7358 0.7177 0.6886

SC-CNN3 0.7925 0.7616 0.7324 0.6952

SC-CNN4 0.8131 0.7737 0.7529 0.7192

example, the samples with the relative permittivities of 1.5
and 2 are utilized in Fig. 7 (a-b) and (c-d), respectively. And
the scattered field data with AWGN of 5% and 20% is used
to reconstruct the targets. When the relative permittivity of
“Austria” profile is 1.5, it is can be seen clearly from Fig. 7
(a) and (b) that the block1 mimicking the BP can well get the
outline of the “Austria” profile and all the methods can suc-
cessfully reconstruct the final targets. The results by the SC-
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Fig. 9. Test on “FoamDielExt” and “FoamTwinDiel” profiles: reconstructed results at (a) and (c) 3GHz, (b) and (d) 4GHz.

Fig. 8. (a) “FoamDielExt” profile and (b) “FoamTwinDiel” profile: the
diameter of the red cylinder is 31 mm and the relative permittivity is 3 ± 0.3.
While the big cylinder has a diameter of 80 mm and the relative permittivity
is 1.45 ± 0.15.

CNNs are better than the one got by BP-Unet and are getting
more and more better when the number of cascaded network
is increased. As you can see from Fig. 7, the above two small
circles are more clearer and the separation between the circles
and the ring is more obvious. The quantitative results are
summarized in Table III. From the retrieved profiles and the
quantitative results, it is validated that the SC-CNN4 achieves
the best performance in terms of the inversion accuracy.

In the testing stage, with the trained network, the average

time for BP-Unet, SC-CNN2, SC-CNN3, SC-CNN4 to test a
sample is about 2s (obtaining BP results and network testing),
0.151s, 0.157s, 0.162s. It can be seen that testing time of SC-
CNNs is shorter, and increasing the number of block2 in the
second part has no obvious effect on the testing time.

C. Experimental Tests

In order to further demonstrate the effectiveness of the
proposed method, the experimental tests are carried out against
with the data from the Fresnel Institute [36].

As presented in Fig. 8, a “FoamDielExt” profile and a
“FoamTwinDiel” profile with TM case are chosen to further
test the performance of the proposed SC-CNNs. Different from
the previous synthetical examples, 241 incident antennas and
8 receiving antennas are used in Fig. 8 (a), also 241 incident
antennas and 18 receiving antennas are used in Fig. 8 (b)
to collect the scattered field data at the working frequencies
from 2 to 10 GHz with a step of 1 GHz. Accordingly, the
size of DoI is also changed from 2.0 m × 2.0 m to 0.2 m ×
0.2 m. Detailed information about this experimental example
can be found in [36]. The “FoamDielExt” profile contains two
cylinders as shown in Fig. 8 (a), and the “FoamTwinDiel”
profile is composed of three cylinders as shown in Fig. 8 (b).
The diameter of the larger cylinder is 80 mm, and the relative
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TABLE IV
The SSIM of “FoamDielExt” and “FoamTwinDiel” examples by BP-Unet

and SC-CNNs corresponding to the Fig. 9 (a) - (d)

(a) (b) (c) (d)

BP-Unet 0.8330 0.8143 0.7965 0.7959

SC-CNN2 0.8343 0.8302 0.7975 0.7927

SC-CNN3 0.8440 0.8377 0.8055 0.8022

SC-CNN4 0.8782 0.8686 0.8245 0.8217

permittivity is 1.45 ± 0.15. The diameter of the small cylinder
is 31 mm, and the relative permittivity is 3 ± 0.3. The null
imaginary part of the profiles is omitted. In this example, the
same MNIST profiles with random cylinders are taken as the
training set as the above numerical examples. 9000 images
from the MNIST set with random circles are used to train
the model and the relative permittivity of them is randomly
distributed between 1.5 and 3.3. In this experimental example,
we change the frequency from 400 MHz to 3 and 4 GHz to
be consistent with the experimental data.

Fig. 9 illustrates the reconstructed images when the oper-
ating frequency is 3 and 4 GHz. It can be seen that, both
BP-Unet and SC-CNNs can obtain the satisfactory results at
3GHz. The average SSIMs of retrieval results for BP-Unet,
SC-CNN2, SC-CNN3, and SC-CNN4 are are shown in Table
IV. Consequently, the proposed SC-CNNs perform better than
BP-Unet in terms of the profiles and the retrieval relative
permittivities.

As the operating frequency is increased to 4 GHz, the
nonlinearity of the model is improved accordingly. Compared
to the results at 3 GHz, the overall reconstructed profiles
look slightly worse, which are shown in Fig. 9 (b) and (d).
The advantage of the SC-CNNs compared to BP-Unet are
much more obvious from both the retrieval profiles and the
quantitative results. Also, with increase of the number of
cascading networks, the recovery of large cylinder is getting
better. All above results validate that the superiority of the
proposed SC-CNNs. And according to the difficulty of the
problems you solved, more cascaded networks can be used to
enhance the inversion performance .

V. CONCLUSION

In this paper, we have proposed an end-to-end scalable
cascaded convolutional neural networks (SC-CNNs) to solve
the ISPs with homogeneous background. As we know, black-
box refers to the lack of clarity on the way the network learns
mapping. Its uncertain how the input effectively approaches
to the target through the network and what is the meaning
of the hidden layers inside the network. To avoid the direct
inversion scheme via a black-box way, the proposed SC-CNNs
are composed of two parts, i.e., one CNN block for the linear
transformation from the field data to the rough image and
the other cascaded CNN blocks to enhance the resolution
of reconstruction. The first block is used to mimic the BP
procedure with the result of BP being taken as the label of the
first network. And the second block is composed of several
cascaded CNN blocks, which is utilized to fulfill the image-
to-image transformation. In those cascaded CNN blocks, the

multi-scale labels with more and more high-frequency com-
ponents are used to guide the cascaded network gradually
to achieve the high-resolution imaging. Therefore, the SC-
CNNs improve the physical meaning and interpretability in
a progressive way. Both synthetic and experimental examples
are implemented to validate the superior performance com-
pared to DIS and the BP-Unet in terms of both the inversion
accuracy and computational efficiency. Especially, for the
moderate difficult example, such as “Austria”, “FoamDielExt”
and “FoamTwinDiel” profiles, SC-CNNs can also obtain sat-
isfactory results. Besides, according to the difficulties of the
ISPs, the second part of the SC-CNNs can be scalable and we
can add or reduce the corresponding blocks to obtain better
results in an efficient and unified way.
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