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An Inhomogeneous Background Imaging Method
Based on Generative Adversarial Network

Xiuzhu Ye

Kuiwen Xu

Abstract— A deep learning-based inversion algorithm is
developed to solve the inhomogeneous background inverse scat-
tering problem (ISP). To alleviate the burden of nonlinearity
and ill-posedness of the ISP, a noniterative method called the
distorted-Born backpropagation scheme is introduced to quan-
titatively reconstruct a rough image of the unknown object in
inhomogeneous background. The roughly reconstructed result
serves as the input of the designed generative adversarial network
(GAN), which outputs the fine reconstructed image of the relative
permittivity. The generator network of the GAN is well designed
as an encoder—decoder structure configured with the attention
scheme. The discriminator network is taken to supervise the
generator to learn the features of target scatterers through an
adversarial training process. The proposed method is proven to
be effective in reconstructing objects embedded in inhomoge-
neous background, which promises a real-time application future
of the ISP.

Index Terms—Image reconstruction, inverse problems.

I. INTRODUCTION

ANY real-world problems such as nondestructive eval-

uation [1], [2], biomedical imaging [3], geophysical
exploring [4], and microscopy [5], [6] can be considered as
electromagnetic (EM) inverse scattering problems (ISPs). Such
kind of problems usually involve using an EM transmitter
to illuminate the region that cannot be seen by bare eyes,
then the collected scattered field which contains information
of unknown scatterer is analyzed numerically through imaging
algorithms, in order to retrieve the spatial distribution of the
EM properties of the scatterer. If all the multiple scattering
effects are considered without approximation, ISP is capable
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of achieving super-resolution using just one single frequency
data set [7]. Due to the high nonlinear relationship between
the EM profile and the scattered field, the ISP is commonly
solved as a nonlinear optimization problem. The cost function
is iteratively updated which is consisted by the mismatch
between the computed scattered field and the measured one.
Furthermore, the ISP is commonly ill-posed [8], i.e., a slight
change in the scattered field may cause a severe change in
the reconstruction, and regularization schemes are, therefore,
required to stabilize the optimization. The computational effi-
ciency of most inversion algorithms is quite low due to the
repeated calling of forward solver in each iteration, which
prevent the further application of ISP in many real-time
imaging scenarios.

Learning approaches successfully exceed traditional opti-
mization methods in terms of speed. A well-trained neural
network can give output in real time. Scientists in the field of
ISP have taken advantage of learning approach a long time
before deep learning approach is well-developed. As in the
early stage, the computer was only capable of dealing with
small-scale problem due to the limitation of the hardware.
The learning-based inversion algorithms usually require prior
information of the unknown scatterers, such as the shape or
the EM properties, and only few parameters that describe
the scatterers can be solved [9]-[11]. Modern deep learning
approaches are capable of dealing with much larger amount of
input and output data, which, therefore, offer the opportunity
for developing deep learning-based imaging algorithms on
the pixel level. This reveals a promising real-time application
future for ISP.

A most straightforward solution is to treat the measured
scattered field as the input and the reconstructed EM profile
image as the output, where the neural network is trained
as a black box without any physical knowledge included.
However, the high nonlinearity and ill-posedness will reduce
the generalizing ability of the neural network. Therefore,
a major idea of the deep learning approach as applied in
ISP is to cooperate as much physical insight into the neural
network. Following this idea, the U-net convolutional neural
network (CNN) was introduced to solve the pixel-based ISP
by Wei and Chen [12] and Li ef al. [13], where a rough image
is got linearly from the scattered field by a backpropagation
scheme (BPS) without iteration, and the neural network learns
the nonlinear relationship between the rough image and the
true image. This approach is proven to be more effective than
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the direct solution, as the input and output are physically
similar which fits the initial designing purpose of the U-net
CNN. Guo et al. [14] have used machine learning method to
learn the most time-consuming gradient calculation, and the
ISP can also be solved in real time. Furthermore, Wei and
Chen [15] have cooperated the whole CNN structure with the
physical representation of the induced current, which is proven
to be more effective in reconstruction.

In this article, a deep learning approach is introduced
to solve the practical problem of imaging objects that are
embedded in the inhomogeneous background. Inhomogeneous
background problem is commonly encountered in through-wall
imaging and nondestructive evaluation. The quality evaluation
of the cores in optical fiber cable [16]-[18] is a typical
example. Another example is the evaluation of the dielectric
slab waveguide, where its core layer can be seen as unknown
scatterer and the outer cladding layers are the background.
Due to the multiple scattering between the background and
the object, the problem is more difficult than imaging objects
in the homogeneous background. There are several traditional
iterative approaches developed to solve the inhomogeneous
background ISPs. Such as in [19] and [20], the wall is
considered as a known object and is excluded from update
process. And in [21], a new differential equation is developed,
and both the induced current and relative permittivity of the
wall are excluded from update. As discussed before, all these
iterative approaches suffer from low computational efficiency
and slow imaging speed. Therefore, the proposed imaging
method aims to overcome these drawbacks through using deep
learning techniques.

To alleviate the burden of nonlinearity and ill-posedness
of the ISP, a linear method called the distorted-Born back-
propagation scheme (DB-BPS) is introduced to reconstruct
a rough image of the unknown object in inhomogeneous
background. This noniterative roughly reconstructed result
serves as the input of the designed generative adversarial
network (GAN), which outputs the fine reconstructed image of
the relative permittivity. The generator network of the GAN is
well constructed by introducing the object-attentional super-
resolution blocks (OASRBs), where the attention scheme is
realized by mask brunch. The advantages of the proposed
method lie in the following points.

1) To the best of our knowledge, it is the first time that deep
learning approach is applied in the inhomogeneous back-
ground ISP. The algorithm is capable of reconstructing
the image in a very short time. If cooperating with a
fast data acquisition equipment, it is possible to realize
a real-time imaging which has a potential application
in through-wall monitoring, emergency rescuing, and
nondestructive evaluation.

2) A real-time linear inhomogeneous background algorithm
is developed to retrieve the rough image of the rel-
ative permittivity. The method is developed based on
the BPS by employing the distorted-Born approxima-
tion [22], [23], where inhomogeneous background, such
as the wall components, is expressed by the inhomoge-
neous background Green’s function. The rough images
got by the proposed linear methods are taken as the input
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of the neural network. And the nonlinear relationship
between the rough image and the fine true image is then
learned by the neural network.

It is noted that the subspace-based distorted-Born iter-
ative method (S-DBIM) in [23] is proposed for homo-
geneous background case, which is a different scenario
from the inhomogeneous background ISP. We borrow
the idea of the inhomogeneous background Green’s
function as in S-DBIM to model the effect of the
wall in this article. In S-DBIM, the updated profile in
last iteration step is considered as the inhomogeneous
background, while in the next step, the difference profile
compared with the last step is considered as an unknown
object embedded inside the inhomogeneous background.
However, here in this article, the inhomogeneous back-
ground is a fixed term without updating, with the object
embedded inside. In S-DBIM, the unknown induced
current is retrieved through the singular value decom-
position and nonlinear optimization, while in DB-BPS,
the induced current is solved by a linear approximation
with different formulas.

3) In this article, a GAN is constructed to solve the
ISP, which is originally developed for super-resolution
image recognition and it exactly fits the need of ISP.
We developed a new frame of GAN where the attention
scheme is added to further improve the resolution by
highlighting the unknown scatterers and inhibiting the
background and the unwanted artifacts.

4) To fit the need of real-world application, the method
is able to reconstruct lossy scatterers (both real and
imaginary parts of relative permittivity), while most
of the existing literatures on machine learning-based
ISPs only consider the real-valued relative permittivity.
Numerical examples including the experimental data are
given to prove the effectiveness and generalization of the
proposed method.

5) In most contemporary literatures on machine
learning-based ISPs, the training data set should
contain similar shaped scatterers to the testing data set.
In this article, the training data set is only the MNIST
digits without adding any other shaped scatterers,
while the testing profiles to be reconstructed can be
cylindrical shaped scatters. This phenomenon reveals
the strong generalization performance of the proposed
GAN.

II. FORWARD PROBLEM

In this article, the imaging of the concealed object embed-
ded in inhomogeneous background is discussed. The 2-D
experimental setup under transverse magnetic (TM) wave
illumination is considered here. As depicted in Fig. 1, inside
the square-shaped domain of interest D, the obstacle of relative
permittivity ¢, surrounds the unknown scatterers. The shape
and material of the obstacle are known a priori. The domain
of interest is illuminated by N; plane waves. Meanwhile, there
are N, antennas located at r, with ¢ = 1,2,..., N,, which
are expected to measure the scattered field produced by each
incidence.
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Fig. 1. Experimental configuration.

Before we move on to the inverse problem, we need
to describe the forward problem which depicts the physi-
cal insights of the scattering effect. We use the method of
moments (MOM) [24] with the pulse basis function and the
delta testing function to discretize the domain D into N =
M x M square subunits, and the centers of subunits are located
at r,ra, ..., ry. The discretized form of total electrical field
in domain D is denoted as vector Etm, with the field on the
nthelement being E;Ot = Etm(rn). It satisfies the following
discretized Lippmann—Schwinger equation [25]:

Ftol :Flnc—"—ED .E.Fto{ (1)
where Emc, Gp, and & are the discretized incident electrical
field, 2-D free space Green’s function in domain D, and
contrast function, respectively. The contrast & is a diagonal
matrix with the diagonal element &(n, n) = &,(r,) — 1, where
&,(r,) is the relative permittivity at r,. If we discretize the
domain of interest fine enough, each square subunit can be
equivalent into a small circle of the same area. The equivalent
radius of corresponding square subunit is denoted as a; then,
we can obtain Gp in the following formulas:

= ikomra _ _
Gp(n,n') = ——Ditkoa)HY (kolF —Ful)  (2)
for n #n/, if n = n/, then
— ik
Go(n.n') = “Z2 B (kea) — 1. 3)

Here, Ji(-), HJ(-), and H](-) denote the first order of
Bessel function, the zeroth order, and the first order of Hankel
function of the first kind, respectively. ko is the wavenumber of
homogeneous free space background. Note that &(n, n) incor-
porate both the unknown scatterers and the known obstacles.

The induced current J is defined as

J=¢-E". )
According to (1), we can reformulate J as
7:?(?"#@7). )
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The scattered field on the receivers outside the domain is
given by

E“=Gs-T (6)

where E™" and Gs are N, x 1 and N, x N dimensions,
respectively, and Gg is the Green’s function which maps the
current in domain D to the scattered field on the receivers.

III. INVERSION ALGORITHM

The purpose of ISPs is to reconstruct relative permittivity
distribution inside domain D, given the measured scattered
field data. In this article, we aim to quantitatively reconstruct
the relative permittivity of the scatterers enclosed by the
inhomogeneous background such as a wall or obstacle. Even
though the deep learning technique is powerful, the ISP
is still too nonlinear and ill-posed for the neural network,
which will reduce the generalization capability of the trained
model. To alleviate the difficulty of the learning process, some
retrievable prior information that depicts the physical process
of scattering can be added into the neural network. Therefore,
the deep learning-based inversion algorithm discussed in this
article contains two major steps. The first step involves a
noniterative linear inversion which retrieves the rough image of
the relative permittivity from the knowledge of the scattering
process (such as the predefined physical parameters G,, Gp,
and Emc). Then, this rough image serves as the input of the
neural network which outputs the final reconstruction of the
relative permittivity image.

A. Initialization: DB-BPS

The quality of input image has a clear impact on the
output solution of neural network. We introduce a noniterative
algorithm that will obtain preliminary nice results as the model
inputs under the inhomogeneous background scenario. The
basic idea follows the BPS as in [12]. However, the one
introduced in [12] is a free space case while the one discussed
in this article is designed for inhomogeneous background sce-
narios. It is linearized by applying the distorted-Born approxi-
mation method. The distorted-Born approximation method was
first introduced by Chew and Wang [22], where the distorted-
Born means that the total electric field is approximated by
the total field produced by the inhomogeneous background by
ignoring the one produced by the enclosed scatterer. Therefore,
we name the proposed method as the DB-BPS.

Here, we consider the case of inhomogeneous background
imaging. Instead of the free space Green’s function Gs, Gp as
used in the homogeneous background case, we corporate the
effect of the background into the inhomogeneous background
Green’s function which are denoted as Gps and Gyp, and the
formulas are given as [23]

Gys = G - (1 — Ebuc 'ED)_I @)

EbD = ED . (? - Ebac 'ED)_1~ (8)

Here, &% _denotes the inhomogeneous background contrast
function and 7 is the identity matrix. In the meantime, the total
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Fig. 2. Overall architecture of the generator.

electric field in the presence of the inhomogeneous background
. — bac .
is denoted as £ and is calculated as
— = = = -1 iy
E"“:(I—Gn.gbm) E™ 9)
which can also be understood as the secondary incident field in
the presence of inhomogeneous background. By ignoring the
scattered field produced by the unknown objects, we approx-
imate the total electric field in the domain to the secondary
incident field produced by the inhomogeneous background.

This linearization procedure can also be understood as the
distorted-Born approximation

E[Ot _ Fbac + Fsca ~ Ebac‘ (10)

We assume that the current produced by the unknown
scatterer J - is linearly proportional to the back-propagated
scattered field (produced by the unknown scatterer in presence
of background)

sca

7=, . GhE

sca

Y

where the operator H denotes the Hermitian operation of the
matrix and y indicates the unknown complex coefficient to be
determined.

A cost function is then constructed as the mismatch of the
measured scattered field and the calculated one, which is the
summation of the scattered field produced by inhomogeneous
background and the unknown scatterers
FObJ(X)ZHEsca—GS ED B G - (X "G - Sca) .
(12)

‘ 2

An analytical solution of y can be obtained as
)" (G- (Gs 7))

L= = =1 —a|2

|G- (@)

13)

where E° = E " — Es . Ebae . Ebac._With %, the current
produced by the unknown scatterers J ** can be derived
from (11); then, the total electric field can be numerated as
Ftol _ Fbac + Eb]) ) 7sca. (14)
For each incidence p, the relationship between the contrast
. —obj —sca
of object ¢ "~ and the current J, can be expressed as

7" = diag @) - E,". (15)

An analytical solution can be obtained for each element in
. . —obj .
the domain of interest &~ (n) with

ST e [Ey o]
— tot 2

—obj

&)=

(16)

B. Machine Learning Process

In the learning process, the preliminary reconstruction result
of DB-BPS is treated as the model inputs, and the outputs
are the true contrasts in the whole domain D. The GAN
is composed of generator G and discriminator D networks,
which are trained in an adversarial way until reaching a Nash
equilibrium. The architecture of the proposed generator is,
as depicted in Fig. 2, the inputs of which are the initial
quantitative images of the contrasts that got by DB-BPS. The
generator is composed of an encoder, a series of OASRBs,
and a decoder. The target of the generator is to convert the
rough input image into a fine reconstruction image.

There are two major requirements in solving the inho-
mogeneous background imaging ISP: 1) to distinguish the
unknown scatterers from the inhomogeneous background and
2) super-resolution imaging requirement: to separate the adja-
cent scatterers by depressing the unwanted artifacts (due to the
multiple scattering effect). Thus, in the design of the neural
network, the pixels which belong to the unknown scatterers
are expected to be retained and updated, while pixels that
belong to the background and unwanted artifacts are expected
to be suppressed or not updated. Therefore, according to the
above requirements, we propose the generator network by
introducing the spatial attention mechanism.

In this section, the structure of the GAN will be illustrated
in detail. First, the modules of the generator are illustrated.
Then, the structure of the discriminator is indicated. Finally,
the training process is introduced.

1) Generator: Encoders: The initialized contrast got by
the first step is fed into the model by a convolutional layer.
The rough image of contrast is split into two channels: one
corresponds to the real part and the other corresponds to the
imaginary part of the relative permittivity profile. The two
parts are stacked along the depth axes before being encoded.
The encoding operation mixes the real part and the imaginary
part together, by exchanging mutual information and retaining
the inherent characteristics. The number of output channels
is 64.

Object-Attentional Super-Resolution Network (OASRN): As
shown in Fig. 2, our OASRN is constructed by cascading a
series of OASRBs. All the OASRBs are identically structured.
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Each OASRB can be understood as one iteration step and the
updated times of the rough contrast image equal to the number
of OASRB modules. The OASRN gradually converts the rough
image into fine image.

It is observed in Fig. 3 that each OASRB is consisted of
two branches, which are called image branch and mask branch,
respectively. The mask branch is marked according to both the
value of dielectric constant and the positions of the objects
and then the marking information is transferred to the image
branch. By extracting the features of the image, the mask
branch assists the image branch to further improve the quality
of contrast image.

In the image branch, we applied the multi-scale fusion
approach, which is inspired by the successful application of
HRNet to realize the super-resolution human posture recog-
nition [26]. Since our network is already composed of cas-
caded modules, unlike the HRNet where the multistage scale
and depth keeps changing, our proposed module has only
one constant stage. To extract features of the feature maps,
the residual block retains the original features while capturing
the crucial information, which is critical to the super-resolution
task. At the final stage of the image branch, the low-scale
features are amplified by deconvolution and connected with
the maximum-scale features.

The mask branch inherits the structure of U-net, as depicted
in Fig. 3 (the skip connections are omitted here for precision).
To obtain the mask information and incorporate the values of
dielectric contrasts and the positions of object, U-net CNN is
used to process the input image. Let us assume that the input
image of the tth OASRB is I,_; and the output image is ;. The
object attention mask M, is computed from the output values
of U-net, which indicates the importance factor of each pixel
in the image. The process of I,_; by U-net can be expressed
mathematically as

M, = o (Unet(I,_,)) (17)

where ¢ is the sigmoid function. The object attention mask
M, is then transferred to the image branch and the image I,
is updated as

I, = (1 + M,) © (MSF(I,_1)) (18)

where operator © denotes an element-wise product and MSF
denotes multiscale fusion effect. By applying the object atten-
tion masks to the image branch, the elements in the image I;
is either highlighted or inhibited.

In the inhomogeneous background ISP, the pixels which
belong to the unknown scatterers are expected to be retained
and updated, while pixels that belong to the background and
unwanted artifacts are expected to be not updated. Therefore,
in the mask branch, we mark importance with each pixel
to decide whether it needs updating or not. The sigmoid
activation function is adopted in the output layer to mark
the importance of each pixel. And thus, the scatterer is auto-
matically distinguished from the background with the artifacts
suppressed. The mask generated by the attention mechanism
will effectively guide the updating and optimization of the
image branch. Therefore, the proposed network is able to fulfill
the requirements in solving the inhomogeneous background
ISP.

Decoder: At the last stage of OASRBs, the final outputs are
fed into the decoder. The decoder is constructed by subpixel
convolution layers as proposed by Shi et al. [27]. And the
dimensions of the output image are four times to those of
the original input image. The decoder contains two subpixel
convolution layers, through which the image is magnified four
times.

2) Discriminator: A discriminator network D is defined
to train the generator, the goal of which is to distinguish
the reconstructed image from the true one. The generator G
is trained in order to fool the discriminator D. In such a
process of adaptive adversarial training method, the two neural
networks will be updated together until they reach a Nash-
equilibrium. The above described process can be described
mathematically as [28]

n;in max E i~ pe (197 [10g Dey (1°M)]
+ E[LRNPG(]LR) [10g(l - DgD (G@G (ILR)))].

Here, Gg, is the generator parameterized by g and Dy,
indicates the discriminator network with parameter fp. I'R is
the input rough image, 767 is the ground truth image for the

19)
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Fig. 4. Digital objects: reconstructed relative permittivity profiles from scattered fields with 10% noise for DB-BPS and GAN, where the relative permittivity
is between 1.5 and 3. The first column shows the ground truth images for four representative tests.

training purpose, and E is the operator of the mathematical
expectation. The discriminator network contains several con-
volutional layers and reduces the image dimensions by adjust-
ing the step size of the convolution kernel. At the end of the
discriminator, dense layer is used to merge spatial information
into a vector and final activation function is a sigmoid function
that outputs a probability of the classification.

3) Training Process: The generator loss function is denoted
as

Ly = Lvise + OCLgAN (20)

where LgAN denotes the adversarial loss, Lysg indicates the
mean square error (MSE), and a is a weighing parameter that
represents the proportion of LS,y that accounts for the Liy.
The pixel-wise MSE loss can be defined as

1 2
Lyse = IWH Z z (If’?~ — Gy, (ILR)x,y,z)

x=1 y=I

21

where W, H, and L represent the width, height, and channels
of the image, respectively.

It is well-known that GAN is difficult to train. In order to
achieve a more stable training process, the least-square-based
adversarial loss function for the generator is used as follows:

L& = E[ (D, (Ga (1)) = 1)°].

For the discriminator, its loss function is defined as follows:

(22)

LB = 5 B[ (00, (1°7) = 1)+ (04, (G, (1)) 0], @3)

To make it clear, the discriminator tries to make the score
of ground truth close to 1 and that of fake inputs close to 0.
Notably, the balance between the MSE loss and adversarial
loss is crucial when training GANs, which means an appro-
priate value a should be carefully chosen.

IV. EXPERIMENTS

In this section, numerical examples including both the
synthetic and experimental results are given to verify the
effectiveness of the proposed method. In all the examples,
12 plane wave incidents that evenly distributed around a
circle are used to illuminate the domain of interest. The size
of domain of interest is 24 x 24 and the frequency of the
incident wave is 2.4 GHz. The obstacle is a square-shaped
wall with outer side length 21 cm and thickness 1 cm. For each
incidence, the scattered field is collected by 24 receivers which
are evenly placed on the circle of radius 113 cm outside the
domain of interest. Therefore, the dimension of the measured
scattered field matrix E is 24 x 12. The domain of interest is
discretized into 40 x 40 square subunits. The synthetic forward
data are added with 10% Gaussian white noise.

We use the MNIST data set for both training and testing.
The training set is composed of 6000 samples, while the
testing set is composed of 100 samples, which are of 10%
samples randomly selected from the original MNIST data set.
Each of the original digit image is resized from 28 x 28 into
40 x 40 for data preprocessing. ADAM optimizer is adopted
for the generator and discriminator with f; = 0.9, f, = 0.999.
Learning rate is initially set tol x 10~ and linearly decay to
0 after 20k iterations. We employed the trained MSE-based
generator network as initialization before training the actual
GAN to avoid unexpected local optima [29]. Our generator
has three identical OASRBs and a for the adversarial loss is
set to 1 x 1073, Maximum 20k iterations are set in the training
process either to the pretrained generator or actual GAN.

A. First Example: Digital Objects

In the first example, the profiles of the embedded unknown
scatterers are digital objects from MNIST data set. The digits
from MNIST data set are set to be dielectric scatterers with
random relative permittivity distributed between 1.5 and 3.0.
The relative permittivity of the wall is 2. Some representative
ground truth examples are presented in the first row of Fig. 4.
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the relative permittivity is between 1.5 and 3 and imaginary part is between 0 and 1. The first column shows the ground truth images for four representative
tests, where the R stands for real part and I stands for imaginary part of the relative permittivity.

The rough image reconstructed by DB-BPS is shown in
the second row of Fig. 4, where the reconstructed permittivity
is relatively low due to the ignored multiple scattering effect.
From the third row of Fig. 4, it is seen that satisfying fine
reconstruction results are obtained by the proposed GAN
method. The structural similarity (SSIM) index for the whole
testing set is calculated as 0.9291.

B. Second Example: Lossy Digital Objects

In the second example, lossy digital objects are used to
test the efficiency of the proposed method. The real part of
the relative permittivity randomly ranges from 1.5 to 3 and
the imaginary part ranges from O to 1. Here, the relative
permittivity of the wall is 2 4+ 0.5. In Fig. 5, several testing
experiments are presented where both the real and imaginary
part are well reconstructed. The SSIM index for the whole
testing set is calculated as 0.8946.

C. Third Example: Lossy “Austria” Profile

In the third example, we use the “Austria” profile as the
unknown scatterers, which is shown in the first row in Fig. 6.
It should be noted that there are no cylindrical scatterers used
in the training process of the GAN (we used the MNIST digit
data set), and this example serves as a test to the generalization
ability of the trained GAN.

The centers for the two disks and the ring are
(0.2,0.4)4, (—0.2,0.4)4, and (0, —0.2)1, respectively. The

Real part Imaginary part

1

Ground 5 s
Truth
h 1 0
0.1 0 01
lB
o D i |
: 1
0.1 0 01
SOP-homo i
3
0.1 l
o D | 0 )
F i -0.1 i
1 0
0.1 0 01 0.1 [} 01
3 1
0.1 0.1
DB- 0 2 0 0.5
BPS+GAN

0.1 0.1
1 0
0.1 0 041 01 0 0.1

Fig. 6. Lossy “Austria” profile: reconstructed relative permittivity profiles
from scattered fields with 10% noise for DB-BPS and GAN for “Austria”
profile. The first column shows the ground truth images.

radius of each disk is 0.154. The inner radius of the ring is
0.24 and its outer radius is 0.41. The relative permittivity of
the Austria profile is 3.0 + 0.9i. The relative permittivity of
the wall is 2 + 0.5i.
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Fig. 7.
ground truth images for three representative tests.

Considering the effect of the wall and the complicated
structure of the “Austria” profile, the effects of multiple
scattering are very strong and consequently the reconstruction
of through-wall case becomes much more difficult than all the
previous experiments.

In Fig. 6, we present the reconstruction results and the
comparison of it with the reconstruction result by the tra-
ditional method SOP-homo [19] and the modified enhanced
Levenberg—Marquart (ME-LM) algorithm [30]. The ME-LM
in [30] is tested only under a lossless scatterer case, and the
result got by the lossy example here is worse than the lossless
one. This phenomenon could be explained by the complexity
of this lossy “Austria” example: 1) the real part of relative
permittivity of the “Austria” profile in this article is higher
than that in [30] (some parts in [30] are 2.8 instead of 3.0),
which results in higher nonlinearity and 2) due to the lossy
scatterers, e.g., the imaginary part of the relative permittivity,
the wave decays quickly while passing through such scatterers,
which raised more difficulty in the inversion.

The proposed machine learning method achieves super-
resolution reconstruction for the details of the objects is clearly
seen and the reconstructed contrast of the relative permittivity
is accurate. The comparison of the proposed method and the
traditional method is listed in Table I, where both the MSE
and SSIM and the time used are listed, where we clearly see
that the proposed method exceeds the SOP-homo and ME-LM
in all aspects.

__The DB-BPS takes some time when calculating Ebs and
Gpp, as in (7) and (8), there is matrix inversion involved.

Experimental results: reconstructed relative permittivity profiles from
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Test 3

0.1

M

1

1

-0.1 ] 0.4

measured scattered field for DB-BPS and GAN. The first column shows the

TABLE I

COMPARISON OF MACHINE LEARNING-BASED
METHOD AND THE TRADITIONAL METHODS

Time/second MSE SSIM
DB-BPS 1.7143 / /
GAN 0.0624 0.0506 0.8034
SOP-homo 5.4665 0.1480 0.3673
ME-LM 5.4827 0.3785 0.5544

This is inevitable for the inhomogeneous background case.
In the real application scenario, such as through-wall imaging,
the parameters of the wall are known a priori. Thus, Ghs and
Gyp can be calculated only once and stored into the memory
of computer. In such case, the DB-BPS process will be greatly
accelerated without the time-consuming calculation of matrix
inversion and the proposed algorithm would be real time.

D. Fourth Example: Experimental Results

To further verify the practicality of the proposed method,
tests with experimental data have been conducted. In the con-
figuration of the through-wall imaging system, the operating
frequency is set as 2.4 GHz and there are 24 antennas evenly
distributed on a circumference of a diameter of 113 cm,
where 12 of them are used as transmitting antennas. The
relative permittivity for the wall is 2 (Teflon). The relative
permittivity of the cylindrical object is around 3, and the
relative permittivity for U-shaped scatterers (plexiglass) is
around 3. The ground truth dimensions of the objects are
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labeled in Fig. 7. More configuration details can be found
in [31]. It should be noted that in order to avoid interference
of the near-field coupling effect, the two receiving antennas
adjacent to the transmitting antenna are closed. Therefore,
the final scattered field matrix is of dimension 21 x 12.

In Fig. 7, three representative experiments are reconstructed
by the proposed method and comparison reconstruction results
conducted by the traditional methods SOP-homo and ME-LM
are shown in Fig. 7. The ground truth is depicted in the first
row. From the reconstruction results, we can clearly see that
there are less artifacts reconstructed by GAN comparing with
the ones reconstructed by traditional iteration-based methods.
And the relative permittivity reconstructed by the GAN is more
accurate (as shown in the third example, where the ground
truth relative permittivity is around 3).

We can conclude that the proposed machine learning-based
method outperforms the traditional iteration-based methods in
both reconstruction quality and computation efficiency.

V. CONCLUSION

This article proposed a deep learning-based method to
solve the inhomogeneous background ISP. To alleviate the
burden of nonlinearity and ill-posedness, a noniterative linear
method based on the DB-BPS is proposed which is called
DB-BPS. A primary good initial image of the contrast is
reconstructed using DB-BPS, which serves as the input of the
GAN. The generator network of the GAN is well constructed
by introducing the OASRB module where the object attention
scheme is realized by the proposed mask brunch. This GAN-
based inversion is able to reconstruct super-resolution objects
even with the surrounded wall.

The performance of all types of neural network relies on the
training data set. One can never include all kinds of objects
into the training data set. A good neural network should have a
strong generalization ability even with a limited training data.
The purpose of this article is to propose a method to solve
the general inhomogeneous background ISP. The GAN-based
inversion algorithm uses only MNIST data set in the training,
without adding cylindrical or other artificial objects, and the
reconstructed results by all kinds of scatterers (lossy scatterer,
“Austria” scatterer, and experimental data) are still satisfactory
and outperform the traditional method. Therefore, we conclude
that the proposed method has a strong generalization ability.
All the examples are reconstructed in almost real time. The
machine learning approach incorporating with physical insight
is proven to be effective in solving inhomogeneous background
ISP. This reveals a promising future of the ISP for real-life
application.
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