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Abstract
Heart rate (HR) measurement and monitoring is of great importance to determine the physi-
ological and mental status of individuals. Recently, it has been demonstrated that HR can be
remotely retrieved from facial video-based photoplethysmographic signals captured using
consumer-grade cameras. However, in existing studies, subjects are mostly required to keep
their facial regions of interest (ROIs) within one single camera. To make this technique
usable in a daily life situation where subjects move around freely, we launch a preliminary
simulated study of seamless remote HR measurement using multiple synchronized cameras
by combining ensemble empirical mode decomposition (EEMD) with time-delay canoni-
cal correlation analysis (TDCCA), termed as EEMD-TDCCA. At each time point, a target
ROI with the largest area is first determined from all the ROIs provided by all the cam-
eras. Then, the RGB time sequence is formed by taking average of all pixels within each
target ROI. Afterwards, the green channel time sequence is decomposed into several intrin-
sic mode functions (IMFs) and only the IMF candidates, whose frequency corresponding to
the maximum amplitude falling into the interested HR range will be further processed by
TDCCA. Finally, the first pair of the canonical variables having the largest correlation coef-
ficient is the HR source and the corresponding HR is derived by peak detection or frequency
analysis. Thirty subjects were recruited and four state-of-the-art methods were employed
for comparison. The best performance was achieved by using the proposed EEMD-TDCCA
followed by frequency analysis, with the mean absolute error 4.11 bpm, mean percentage
error 5.26%, root mean square error 5.37 bpm, the Pearson’s correlation coefficient 0.90
and the intra-class correlation coefficient 0.89, demonstrating the feasibility of our proposed
seamless remote HR measurement framework. This study will provide a promising solution
for practical and robust non-contact HR measurement applications.
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1 Introduction

Since heart is one of the most important organs of the body, the measurement and moni-
toring of heart rate (HR) are essential for clinical diagnosis and daily healthcare, e.g., the
surveillance of cardiovascular catastrophes and the treatment therapies of chronic diseases.
Various methods have been developed to estimate HR in contact or non-contact manners,
and a recent review summarizes the relevant advances [42].

Photoplethysmography (PPG) is a well-known and non-invasive optical method to mea-
sure blood volume changes in the skin or in a small part of the body [28]. Traditionally,
the light source of PPG is typically provided by a light-emitting diode (LED, either in the
VIS and/or NIR frequency range) while the sensor is a photodetector (PD) that is con-
tact to the body, i.e., finger tip. Due to the contact characteristic, it will cause discomfort
when wearing them for a long time, and is not suitable for the trauma or infectious patients
to wear. Recently, a novel non-contact sensing method, namely remote PPG (rPPG), has
spurred a remarkable number of studies. The rPPG measurement is based on the simi-
lar principle to that of the conventional PPG, which the pulsatile blood propagating in the
cardiovascular system changes the blood volume in the microvascular tissue bed beneath
the skin within each heart beat and consequently produces a quasi-periodical fluctuation
[12]. Such pulse-induced fluctuation can be reflected by the subtle color variations mea-
sured from a distance of up to several meters using cameras under ambient illumination
conditions [3, 20, 39]. The rPPG has been proven to be superior because of the no wear-
ing convenience, low cost and widespread that may be suitable for neonatal intensive
care unit monitoring, trauma patient monitoring, driver status assessment, and affective
state assessment [1, 19, 21, 38, 53], etc. However, the rPPG signals are prone to be con-
taminated by motion artifact, a lot of efforts have been made to eliminate the influence.
[2, 16, 32, 46, 47]

However, most of the aforementioned rPPGmethods aiming to eliminate motion artifacts
use one single camera, and the single camera may miss capturing the facial region of inter-
est (ROI) when someone moves around. In this paper, with the aim to widen the range of
rPPG applications, we launch a preliminary simulated study to employ multiple cameras to
explore the feasibility of seamless remote HR measurement by combining ensemble empiri-
cal mode decomposition (EEMD) with time-delay canonical correlation analysis (TDCCA),
termed as EEMD-TDCCA. CCA is able to find linear transformations and extract pairs of
canonical variables (CVs) to reflect the correlations between two datasets, while the CVs
extracted from each data set are mutually uncorrelated in transformation space [13]. The
number of CV pairs can be equal to or lower than the smaller rank of the two datasets. Due
to that the rPPG is quasi-periodical, the original HR source will be highly correlated to its
time-delay version. In contract, the correlation between the noise source and its correspond-
ing time-delay version is lower. Thereby, the time-delay CCA can be employed to extract
CVs corresponding to HR source. Besides, considering that the types of noise can be mul-
tiple including motions, illuminations and the mixture caused by rotation, the three RGB
channels are far from extract the inherent CVs. Thus, before TDCAA, we utilized EEMD
to help decompose the green channel into a couple of intrinsic mode functions (IMFs) for
pre-denoising. The corresponding performance is compared with other four state-of-the-art
methods.
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The main contributions of the proposed framework are as follows:

1. To our knowledge, it is the first time that a synchronized multi-camera framework is
proposed to remotely and seamlessly measure HR during the simulated moving-around
situation. The situation is that a subject passively rotates 180 degrees with an uniform
speed by standing on a rotating turntable. It should be noted that at least one camera
will capture the facial ROI at a certain time, but no matter how long it will last.

2. We proposed to select the ROI with the largest area from the cameras as the target ROI
at each time point. Then, multichannel RGB time sequence can be calculated by taking
average of all pixels within each target ROI. By this means, the changing information
of the distance/angle between the face and the camera along with the moving of the
subject can be solved.

3. We proposed an algorithm framework of EEMD-TDCCA to evaluate HR during our
simulated moving-around experiments and the best performance was achieved by the
proposed EEMD-TDCCA followed by frequency analysis, compared to other four
methods, demonstrating the effectiveness of the proposed framework.

The organization of the rest of the paper is as follows: In Section 2, we will briefly review
the advances on rPPG. Section 3, we will introduce relevant methods with respect to target
ROI determination, HR source extraction based on EEMD-TDCCA and HR estimation.
Section 4 will present the experiments and related results. Extensive discussions will be
shown in Section 5. Section 6 will conclude the paper.

2 Related work

Consumer-level-camera-based rPPG was first proposed by Verkruysse et al. [45] in 2008.
They demonstrated that HR could be measured from video recordings of the subject’s face
under ambient light using an ordinary digital camera. Later, Poh et al. [36] proposed a lin-
ear combination of RGB channels to estimate HR by employing blind source separation
(BSS) methods. As an alternative, Sun et al. [41] proposed a framework of rPPG measure-
ment based on joint time-frequency analysis. However, almost all above studies have been
conducted under relatively well-controlled situations, e.g., stable illumination and unmoved
subjects in front of cameras. In realistic situations, the cardiac pulse signals measured from
facial regions could be contaminated by a number of factors, typically as illumination
variations and motion artifacts [30, 50].

There are two main schemes to tackle illumination variations. The first scheme is based
on signal de-noising methods to separate illumination variation signals from pulse signals.
For instance, Chen et al. [8] separated the real cardiac pulse signals from the environmental
illumination noise by applying ensemble empirical mode decomposition (EEMD) to the
single green channel. The second scheme is mainly based on the assumption that both facial
region of interest (ROI) and background ROI have similar illumination variations and the
background ROI can be considered as a noise reference to denoise the facial signals. These
illumination variation source can be both extracted from the background ROI and the facial
ROI by using autoregressive (AR) modeling [43], normalized least mean square (NLMS)
[30], least square curve fitting (LSCF) [27], joint blind source separation (JBSS) [14], or
partial least squares (PLS) algorithms [49].

As for motion artifact elimination solutions, there are two mainly types based on whether
knowing the prior information of components or not. The first type is called blind source
separation (BSS)-based methods which extract multi-channel unobserved sources from a
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set of observed mixed signals without prior information regarding the mixing process. For
example, Poh et al. [35] separated the source signal from the raw signals that contami-
nated by motion artifacts by using independent component analysis (ICA) (a typical method
of BSS). Sun et al. [51] proposed a new artifact-reduction methods with the combination
of planar motion compensation and BSS. Monkaresi et al. [33] proposed to eliminate the
impact of motion artifacts by applying both ICA and machine learning approach. Since con-
ventional BSS techniques are originally designed to handle one single data set at a time,
when the availability of multi-datasets increases, various joint BSS (JBSS) methods are now
proposed. Guo et al. [19] first employed independent vector analysis (IVA) to jointly ana-
lyze color signals derived from multiple facial sub-region datasets. Qi et al. [37] explored
correlations among facial sub-region datasets to improve motion robustness by using JBSS.
The second type is model-based methods which utilize color vector information to control
the demixing for component derivation. For instance, De Haan and Jeanne [16] devel-
oped a chrominance-based method (CHROM) to eliminate the influence of motion artifacts.
CHROM considers both diffuse reflection components and specular reflection contribu-
tions, and by the linear combination of the individual R, G and B channels to eliminate the
impact of motion artifacts. Wang et al. [47] proposed a Plane-Orthogonal-to-Skin (POS)
method, which defined a POS tone in the temporally normalized RGB space to extract HR
while reducing the impact of motion artifacts. Wang et al. [46] also proposed a rPPG algo-
rithm that referred to Spatial Subspace Rotation (2SR), which estimated a spatial subspace
of skin-pixels and measured the corresponding temporal rotation to extract HR.

However, all the aforementioned motion-robust solutions are successful under the situa-
tions that the complete facial ROI can be detected and tracked by a single camera with face
alignment algorithms. However, there still remains one big challenge that the single cam-
era may miss capturing the facial region of interest (ROI) when someone moves around. To
address this problem, several studies have proposed multi-camera frameworks. On the one
hand, the performance of HR estimation in the presence of motion artifacts can be improved
when adopting multi-camera rather than the single-camera. For instance, J. R. Estepp et al.
[17] utilized multi-cameras, instead of the single camera, to mitigate the HR measurement
error caused by motion artifacts by increasing the dimensionality of the decomposed chan-
nel space prior to employing blind source separation. Similar conclusion can be drawn by
E. B. Blackford et al. [4] that the HR estimation from the fusing data acquired by the triple-
camera array was better than that from the single camera. On the other hand, the problem
of the facial ROI missing can also be solved by the multi-camera scheme. In 2017, D. J.
McDuff et al. [32] proposed a method combining BSS with AR model to remotely measure
HR from moving subjects by fusing partial camera signals from 9 cameras covering a range
of semi-circle. In their study, the subjects only moved their head horizontally. Besides, the
camera with the duration of capturing the facial ROI less than 20% of the whole analysis
window would be discarded. In this case, if fewer cameras are adopted and only one single
camera can capture the facial ROI during a shorter period (less than 20% of the whole anal-
ysis window), the data from this camera would be discarded, causing the proposed method
in [32] to derive a local evaluated HR instead of a global one within the whole analysis
window.

3 Method

The flowchart of our proposed synchronized multi-camera framework is illustrated in Fig. 1.
First, multiple cameras are employed to synchronously capture facial videos. For each
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Fig. 1 Flowchart of the synchronized multi-camera framework for non-contact HR measurement

video, face alignment and tracking algorithms are utilized to detect and track facial ROIs
respectively. At each time point, the target facial ROI can be determined as the one that
has the largest area among all the detected facial ROIs. Then, the spatial means of all the
pixels within each target ROI are subsequently calculated and temporally concatenated to
form a time sequence. Second, the proposed method EEMD-TDCCA is adopted to obtain
the sources containing the blood volume pulse (BVP) information, called HR source extrac-
tion. Finally, the extracted HR source will be utilized to measure HR by adopting frequency
analysis and peak detection techniques. The details will be elaborated in the following
subsections.

3.1 Target ROI detection

3.1.1 ROI detection and tracking

Reliable ROI detection and tracking are crucially important for subsequent rPPG-based HR
estimation [18, 30, 34]. It is suggested that the boundary of the detected facial ROI should
be within the face boundary. Besides, the eye region is better to be excluded from the facial
ROI due to blinking interferes. With the consideration of above aspects, facial landmark
localization is a natural approach for facial ROI detection and tracking. In this study, an
approximated structured output learning approach in constrained local models technique is
employed to efficiently detect 66 facial landmarks [54], which will be tracked by tracking
learning detection (TLD) scheme [26]. Besides, only nine of the detected landmarks are
selected to define our facial ROI. Figure 2 shows the coordinates of all the 66 facial land-
marks in terms of small green circles, and the selected 9 ones, termed as 1 to 9. The area
within the red polygon is the facial ROI. Suppose there are Ni (1 ≤ Ni ≤ 4) cameras that
can synchronously capture the facial ROIs at the i-th image frame (totally I image frames
during each analyzed window 1 ≤ i ≤ I ), ROIni,i is used to denote the facial ROI cap-
tured from the n-th camera at the i-th image frame (1 ≤ ni ≤ Ni) and the corresponding
area size can be expressed as area

(
ROIni ,i

)
.

3.1.2 Target ROI detection

For the i-th image frame, the target ROI is defined as the n∗
i one, which has the largest area

size among all the detected facial ROI. The n∗
i can be expressed in:

n∗
i = argmax

(
area

(
ROIni ,i

))
, 1 ≤ ni ≤ Ni (1)
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Fig. 2 Illustration of all the
detected facial landmarks and the
selected ones to form our facial
ROI
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and the target ROI is marked as T ROIn∗
i
. Thereby, for all the I

image frames, the selected target ROIs can be denoted as T ROI ={
T ROIn∗

1
, T ROIn∗

2
, . . . , T ROIn∗

I

}
, and the corresponding area sizes are AreaT ROI =

{
area

(
T ROIn∗

1

)
, area

(
T ROIn∗

2

)
, . . . , area

(
T ROIn∗

I

)}
.

3.1.3 Spatial RGBmeans

Due to the fact that the spatial pixel averaging can reduce the camera quantization error [47].
In this paper, we employs the same strategy. Specifically, for each image frame, the spatial
RGB means of all the pixels within the target ROI is calculated. Since visible cameras have
three color channels R, G and B, 3 averaged pixel intensities within the target ROI can be
formed as £◦

RGBc,i =
∑

x,y∈T ROIn∗
i

I (x, y, i)

area
(
T ROIn∗

i

) (2)

with

RGBi = {
RGBc,i

}
, c = R,G,B (3)

where I (x, y, i) denotes the pixel value of coordinate (x, y) within the target ROI at the
i-th image frame. After processing all the I image frames, a temporal RGB trace matrix
RGB = {RGBi} ∈ R3×I , i = 1, 2, . . . , I is formed, with each row representing the
averaged pixel values within the target ROI from a color channel.
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3.2 EEMD-TDCCA-based HR source extraction

Recent study has demonstrated that EEMD is a good choice to decompose the single chan-
nel time sequence, typically the green channel time sequence, into several intrinsic mode
functions (IMFs), among which the HR information is included [8]. Thus, EEMD helps
to separate the real cardiac pulse signals from the environmental artifacts [8]. Besides,
researchers have proposed several methods to deal with the RGB traces with the aim of
extracting the source that contains the pulse-induced information. The RGB spatial means
can be composed of linear mixtures of several underlying sources including the HR source.
In this case, blind source separation (BSS) technique is a feasible option to separate the
temporal RGB traces into independent signal sources using different criteria and will take
the most periodic source as the HR source [23, 29, 52]. However, when the amplitude of
the motion is large, the BSS-based method might also be challenged. Recently, canoni-
cal correlation analysis (CCA) has been proposed as an alternative BSS approach for HR
source extraction [2]. With the combination of EEMD and CCA, the muscular artifacts can
be isolated from electroencephalogram signals [11, 13]. In this paper, we address the dif-
ference between rPPG signals and the artifacts in the form of autocorrelation. Unlike rPPG
quasi-periodical characteristic, while the artifacts have relatively low autocorrelation for
their broad frequency spectrum. Using raw rPPG signal as the first dataset and its tempo-
rally delayed version as the second, CCA seeks the sources maximally autocorrelated and
mutually uncorrelated by exploiting second-order statistics (SOS). Thereby, in this paper,
EEMD followed by TDCCA employs this unique characteristic to isolate motion artifacts
from rPPG signals. The performance of the CHROM [16], POS [47], EEMD [8] and EEMD-
CCA (without time delay) methods will be compared to demonstrate the feasibility of our
proposed EEMD-TDCCA framework.

3.2.1 Ensemble Empirical Mode Decomposition (EEMD)

EEMD is a noise assisted data analysis method which is an optimized version of empirical
mode decomposition (EMD). EMD, first proposed by Huang [25], is a time space analysis
method to analysis nonlinear and non-stationary data. In EMDmethod, the color trace Xc ={
RGBc,i

}
, i = 1, 2, . . . , I is decomposed into a finite number of intrinsic mode functions

(IMFs):

Xc =
N∑

j=1

IMFj + rN (4)

where rN is the residue of Xc, after N number of IMFs are extracted. IMFs are simple
oscillatory functions with varying amplitude and frequency, and hence have the following
properties [25]: 1. Throughout the whole length of a single IMF, the number of extrema
and the number of zero-crossings must either be equal or differ at most by one (although
these numbers could differ significantly for the original data set); 2. At any data location,
the mean value of the envelope defined by the local maxima and the envelope defined by
the local minima is zero. In practice, the EMD is implemented through a sifting process
that uses only local extrema, which will lead to mode mixing [48]. To overcome this dis-
advantage, a new noise-assisted data analysis method, called the ensemble EMD (EEMD),
is proposed. EEMD defines the true IMF components as the mean of an ensemble of trials,
each consisting of the signal plus a white noise of finite amplitude.

The main steps of EEMD are shown in Algorithm 1. By this means, the added white
noise will be averaged out with a sufficient number of trials, and the only persistent part that
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survives the averaging process is the component of the signal. According to [48] and [7],
an ensemble number of a few hundreds will generally lead to a reasonable result, and the
noise standard deviation has been suggested to be 20% the standard deviation of the original
signal.

Algorithm 1 The major steps of EEMD.

Input: The Green channel time sequence .
Output: The intrinsic mode functions , 1 2 .
1: repeat
2: Add a white noise to the signal (different white noise series for each time).
3: Find all the local maxima and minima over the full length of the signal.
4: The local maxima are connected using a cubic spline creating an upper envelope.

The local minima repeat the same process to calculate the lower envelope.
5: Compute the average of the two envelopes and subtract this average from the

original signal, resulting in a new signal.
6: until Obtain the (ensemble) means of corresponding IMFs of the decompositions as

the final result

After IMF extraction, fast Fourier transform (FFT) was adopted to calculate the corre-
sponding frequency spectrum for each IMF. For each IMF, the frequency corresponding
to its maximal amplitude is identified. If the frequency falls within the possible frequency
range of HR (ranging from 0.7 Hz to 3 Hz, covering the normal range of human HR from
42 beats per minute (bpm) to 180 bpm), the corresponding IMF will be determined as
an IMF candidate. Then the IMF candidates can be obtained, denoted as X ∈ R

D×I =
{X1, X2, . . . , XD}T , where D is the number of the IMF candidates.

3.2.2 Canonical Component Analysis (CCA)

Canonical component analysis (CCA) is a popular technique to find two pairs of canonical
variables (CVs), one for each set, such that the correlation matrix between the two sets is
diagonal and the correlations on the diagonal are maximized which is a second-order mul-
tivariate statistical analysis method proposed by Hotelling [24]. CCA has been extensively
utilized in many fields due to it’s low complexity, fixed number of model parameters, and
correlation representation in multiview learning [31], such as biomedical signal processing
[6, 10], including medical data fusion [15], physiological parameter detection [37], removal
of muscle artifacts from electroencephalogram signals [9], analysis of gene expression [40]
etc. Considering that the rPPG is quasi-periodical, the original HR source will be highly
correlated to its time-delay version and the correlation between the noise source and its cor-
responding time-delay version is lower. Thereby, we propose to employ the time-delay CCA
to extract CVs corresponding to HR source.

The time-delay version of the candidate IMF X is defined as XD ∈ R
D×I ,

whereXD(i) = X(i + τ), τ denote the points of the time delay. Here τ = 1 and
i = 1, 2, . . . , I − 1. CCA is to find pairs of CVs U = {U1, U2, . . . , UJ }T and
V = {V1, V2, . . . , VJ }T , J ≤ min(rank(X,XD)), which tries to maximize the correlation
between the two matrices by computing two canonical coefficient vectors or weight vectors
α ∈ R

D×J = (α1, α2, . . . , αJ ) and β ∈ R
D×J = (β1, β2, . . . , βJ ). Thus, the j -th pair of

CVs can be expressed as :
Uj = αT

j X (5)

23030 Multimedia Tools and Applications (2020) 79:23023–23043



Vj = βT
j XD (6)

Then, the corresponding weight vectors can be obtained by maximizing the correlations
between U and V by optimizing the objective function:

max
αj ,βj

ρ(X, XD) = Cov
(
Uj , Vj

)

√
Var

(
Uj

)
Var

(
Vj

) = αT
j CXXD

βj
√(

αT
j CXXαj

) (
βT

j CXDXD
βj

) (7)

where CXXD
is the cross-covariance matrix of X and XD , CXX and CXDXD

are the
autocovariance matrices of X and XD , respectively

Through a deflationary procedure and using the method of Lagrange multipliers, J pairs
of weight vectors and their corresponding canonical variates can be derived. Consequently,
the first pair of CVs (U1 and V1) having the largest canonical correlation, the following pair
of CVs having the second largest canonical correlation, and until the last pair of CVs have
the smallest canonical correlation. Thereby, the first pair of CV (either U1 or V1) will be
determined as the HR source.

3.3 HR estimation

The HR can be estimated after the extraction of HR source. Currently, two main types of
methods can be utilized to estimate HR, called peak detection and frequency analysis based
on fast Fourier transform (FFT). The peak detection algorithm is performed using a custom
algorithm with a moving time window δ, since there is a refractory period for an excitable
cardiac muscle membrane to be ready for a second stimulus. The HR is calculated as N·60/T
beat per minute (bpm), where N is the number of peaks, and T is the analysis time in terms
of seconds. Frequency analysis means that first the HR source signals are first transformed
from time domain into frequency domain by FFT. Then, the HR frequency is defined as the
frequency having the maximum amplitude in the frequency domain, marked as fmax. The
HR is finally calculated as 60 · fmax (bpm). The main steps of the EEMD-TDCCA-based
HR estimation is described in Algorithm 2.
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3.4 Performancemeasures

Several metrics have been used to evaluate the performance of HR estimation, such as
mean absolute error (MAE), standard deviation (SDe), mean percentage error (MPE), root
mean square error (RMSE), the Pearson’s correlation coefficient r and intraclass correlation
coefficient (ICC).

Mean absolute error measures the magnitude of the absolute average error and the
corresponding formula is:

MAE = 1

n

n∑

i=1

∣
∣HRnci − HRgti

∣
∣ (8)

where HRnci denotes the i-th HR estimation obtained from rPPG signals, HRgti is the i-th
reference one and n denotes the total number of participants.

Standard deviation is the standard deviation of the heart rate differences between the
observed values and the reference values.

Mean percentage error is the average of the percentage error between HRnci and HRgti ,
expressed as:

MPE = 100%

n

n∑

i=1

∣∣HRnci − HRgti

∣∣

HRgti

(9)

Root mean square error is defined as the square root of the average of squared differences
between the observed value (HRnci) and the reference value (HRgti). It can be computed
as:

RMSE =
√√
√√1

n

n∑

i=1

(
HRnci − HRgti

)2 (10)

The Pearson’s correlation coefficient r between the observed value (HRnci) and the
reference value (HRgti) is also considered:

r =
∑n

i=1

(
HRnci − HRnc

) ((
HRgti − HRgt

)

√∑n
i=1

(
HRnci − HRnc

)2
√∑n

i=1

(
HRgti − HRgt

)2
(11)

where HRnc and HRgt are the mean values of the estimated and the reference HR values,
respectively.

Intraclass correlation coefficient (ICC) a statistical parameter that measures absolute
agreement between two continuous variables which is defined as:

Yij = μ + αj + εij (12)
where Yij is the j -th observation of the i-th individual, μ is the mean of the overall obser-
vation, αj is an unobserved random effect shared by all values in group j , and εij is an
unobserved noise term. Thus ICC can be defined as:

ICC = σ 2
α

σ 2
α + σ 2

ε

(13)

where σ 2
α is the variance of αj and σ 2

ε is the variance of εij . The ICC values below 0.4
represent poor agreement, it is good agreement when the values between 0.4 and 0.75 , and
values above 0.75 represent an excellent agreement of the measurements [22].
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4 Experiments and results

4.1 Experimental setup

Our experimental setup is shown in Fig. 3. Four iPhone7s (Apple Inc, USA) with ios 11
system were employed to synchronously collect facial videos. Each iPhone was fixed on
one tripod. Totally four tripods were placed on the semicircular arc with a radius of 0.8
(m), while an electric turntable (ComXim, MT380WL80H) was placed on the center of the
circle. In order to simulate the move-around situation, participants stood on the turntable and
moved around by controlling the corresponding switch to rotate with a relatively uniform
speed. The rotation speed was controllable ranging from 4.5 degrees per second (dps) to
9 dps. During the video recording, participants were asked to stand on the turntable, and
the height of the tripods were adjustable, making sure that the face were in the middle
of the camera view. The angle between each two cameras was set to 45◦. Meanwhile, the
ECG acquisition system ECG6951D (Nihon Kohden Co., Shinjuku-ku, Tokyo, Japan) was
utilized to acquire the HR ground truth, which was synchronized with the recorded videos.
With the approval of the Ethics Review Committee of Hefei University of Technology, 30
informed Asian-skin-color subjects (22 males and 8 females), with the ages ranging from
20 to 30 years old were recruited in this experiment. The participants’ HR range from 60
bpm to 110.4 bpm. All the videos were recorded with a frame rate of 30 frames per second
(fps) and a resolution of 1920 × 1080.

To cover the range of the semicircle, the rotation speed was selected as 8.18 dps. In other
word, each semicircle rotation took about 22 seconds. Each participant performed once
facial video collection, producing 30 facial videos in total. During the following process
of HR estimation, a duration about 22 seconds of all the facial videos were selected as the
processing window length.

θ = .

θ =

Turntable

R
ot

at
io

n

ECG

Fig. 3 Experimental setup for facial video acquisition based on multi-cameras and corresponding HR
reference acquisition
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4.2 Experimental results

4.2.1 HR estimation based on EEMD-TDCCA

Before using EEMD, the green channel spatial means of the target facial ROI are normalized
with z-scores to be zero mean and unit variance [35] and then detrended by a smoothness
priors approach with the smoothing parameter (λ = 10) [44]. According to [48], [7], an
ensemble number of a few hundreds will generally lead to a reasonable result and the noise
standard deviation has been suggested to be 20% the standard deviation of the original
signal. In this study, the ensemble number was set as 100 and the noise standard deviation
was set as 0.2. Since it is usually suggested that the number of IMFs is determined by the
equation:

N = f ix
(
log2(I )

)
(14)

where N is the number of data points, f ix() is a rounding function. In this study, I is equal
to 660, according to the equation, the number of the IMFs is determined as 10.

According to the selecting criteria of IMF candidates, the IMF candidates turn to be
IMF3, IMF4 and IMF5 with the frequencies corresponding to the largest amplitude 2.31
Hz, 2.02 Hz and 1.15 Hz respectively. Figure 4 shows the IMF candidates and their cor-
responding frequency spectrums. Among these IMF candidates, the amplitude of IMF2 is
the largest. In this case, the estimated HR will be 121.2 bpm if only the EEMD algorithm
is adopted, while the real HR is 70.9 bpm. Fortunately, in this study, the three IMF candi-
dates (one dataset) and their corresponding time-delay version (the other dataset) are sent to
CCA. The derived U1 is determined as the HR source, and its frequency corresponding to
the largest amplitude is 1.15 Hz. Both the reference HR signal (marked as ECG) and the HR
source (marked as rPPG) are shown in Fig. 5. It can be seen that the final estimated HR is
69 (60 × 1.15) bpm, only 1.9 bpm less than the reference HR, demonstrating the feasibility
of the proposed EEMD-TDCCA framework.
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Fig. 4 IMF candidates and their corresponding frequency spectrums
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Fig. 5 Illustration of the reference HR signal (top) and the HR source derived from EEMD-TDCCA (bottom)

4.2.2 Performance comparison and summary

Table 1 lists the performance of HR estimation in terms of the above mentioned five per-
formance metrics by adopting the EEMD-TDCCA and other four state-of-the-art methods
(CHROM [16], POS [47], EEMD [8] and EEMD-CCA (without time delay)) followed

Table 1 The performance of HR estimation in terms of performance metrics by adopting different methods
followed by peak detection and frequency analysis

MAE (SDe) MPE RMSE
r

ICC

(bpm) (%) (bpm)

CHROM P 10.92 (9.20) 15.13 14.28 0.39 0.34

F 7.84 (6.51) 10.71 10.19 0.65 0.65

POS P 11.78 (7.52) 16.25 13.97 0.31 0.13

F 8.20 (6.95) 10.57 10.75 0.62 0.62

EEMD P 10.26 (6.41) 13.99 12.10 0.54 0.44

F 7.87 (5.95) 10.22 9.86 0.62 0.62

EEMD-CCA P 10.29 (5.97) 14.02 11.88 0.58 0.52

F 12.20 (7.75) 15.91 14.45 0.49 0.47

EEMD-TDCCA P 7.71 (4.14) 10.17 8.75 0.67 0.64

F 4.11 (3.46) 5.26 5.37 0.90 0.89

P stands for peak detection and F corresponds to frequency analysis
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by peak detection (abbreviated as P ) and frequency analysis (abbreviated as F ). It can
be seen from Table 1 among all the method with peak detection, the best performance is
achieved by our proposed EEMD-TDCCA. To be specific, the MAE (SDe) of the esti-
mated HR by using CHROM, POS, EEMD, EEMD-CCA and EEMD-TDCCA with peak
detection are 10.92 (9.20) bpm, 11.78 (7.52) bpm, 10.26 (6.41) bpm, 10.29 (5.97) bpm
and 7.71 (4.14) bpm, respectively. The MPEs of the estimated HR by using the five meth-
ods with peak detection range from 10.17% to 16.25%, and the RMSEs range from 8.75
bpm to 14.28 bpm. The Pearson’s correlation coefficient of the estimated HR derived from
EEMD-TDCCA with peak detection is the largest with 0.67 while that of the other four
methods are 0.54, 0.58 , 0.39 and 0.31, respectively. The ICCs of the estimated HR derived
from EEMD, EEMD-CCA and EEMD-TDCCA with peak detection are 0.44, 0.52, and
0.64 respectively, demonstrating a good agreement with the corresponding reference HR
(between 0.4 and 0.75). The ICCs of CHROM and POS with peak detection are both
below 0.4.

It can be seen from Table 1 that the performance of HR estimation by using a cer-
tain method with frequency analysis sometimes is better than that with peak detection
except EEMD-CCA. They are at least 2 bpm lower than the frequency analysis accordingly.
Besides, our proposed EEMD-TDCCA followed by the frequency analysis achieves the best
results. The corresponding MAE is 4.11 bpm, the MPE is 5.26%, the RMSE is 5.37 bpm,
the correlation coefficient is 0.90 and the ICC is 0.89, which all indicate the excellent per-
formance of the proposed methods when compared to other four methods. Specifically, the
MAE (SDe) achieved by using EEMD-TDCCA is the smallest with 4.11 (3.46) bpm, while
that of the other four methods are 7.84 (6.51) bpm, 8.20 (6.95) bpm, 7.87 (5.95) bpm and
12.20 (7.75) bpm, respectively. The values of MPE and RMSE achieved by using EEMD-
TDCCA are also the smallest with 5.26% and 5.37 bpm, respectively, at least 5.31% and
4.82 bpm smaller than those achieved by other methods. Besides, the Pearson’s correlation
coefficient of EEMD-TDCCA is the largest with 0.90, at least 0.25 higher than that of the
other four methods. The ICC of EEMD-TDCCA is the also largest with 0.89, demonstrat-
ing the excellent agreement of the methods while other methods are 0.62, 0.47, 0.65, 0.62,
respectively.

A one-way ANOVA test was conducted to assess the statistical difference between the
proposed EEMD-TDCCA and the other four methods. The level of statistical significance
was set to p < 0.05. The statistical results show that the HR estimated by the proposed
EEMD-TDCCA is significantly better than that of any other method (the maximum p value
is 0.0064).

Since the method with frequency analysis is usually better than that of the same method
with peak detection, the Bland-Altman plots are utilized to analyze the agreement between
the estimated HR by our proposed EEMD-TDCCA framework and the HR reference (with
frequency analysis), as well as other three methods accordingly (excluding EEMD-CCA),
shown in Fig. 6, with Fig. 6, b, c and d corresponding to CHROM, POS, EEMD and EEMD-
TDCCA, respectively. The mean bias of HR estimated by using CHROM-based method is
-1.5 bpm and the corresponding 1.96 times SD is 18.6 bpm. The mean bias of HR esti-
mated by using POS-based method is 1.6 bpm and the corresponding 1.96 times SD is
22.8 bpm. The EEMD-based method achieves the mean bias of 1.0 bpm, with the corre-
sponding 1.96 times SD 20.6 bpm. The mean bias of EEMD-TDCCA is only 1.6 bpm with
the corresponding 95% limits of agreement ranging only from -8.6 to 11.8 bpm, at least
8.4 bpm improvement compared to other three methods. The Bland-Altman plot demon-
strates the feasibility of our proposed EEMD-TDCCA framework followed by the frequency
analysis.
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Fig. 6 Bland-Altman plots of the estimated HR by different methods and the reference HR

5 Discussions

According to the mathematical model proposed by Wang et al. in [47], during a constant
daytime situation, the skin area measured by each camera has a varying color due to both
motion-induced specular variations and pulse-induced subtle color changes. In this study,
the motion artifacts are produced by the simulated moving-around situation with the help of
turntable. For each camera, the spectral compositions are correspondingly changing since
the angle between the skin tissue and the camera is changing along with the rotation.
Besides, four cameras placed at different locations had different angles with the sunlight-
entering window, which caused corresponding absolute illumination intensities different
and led to varying RGB means of ROIs. Consequently, the concatenated RGB means turned
out to be non-stationary and non-linear. In this paper, the concatenated RGB means were
first normalized with z-scores, with the aim of eliminating the influence of different abso-
lute illumination intensities. Despite of it, the normalized concatenated RGB means still
contained pulse-induced subtle color changes, motion-induced variations and other noises.
Experimental results demonstrated that CHORM-based method has the ability of extract-
ing HR source from the simulated moving-around situations, since it used the knowledge
of color vectors of different components to form the chrominance feature linearly com-
bined by RGB channel signals and the impact of motion artifacts can be roughly eliminated.
The reason why the proposed EEMD-TDCCA performed best might be that, although
both dominating noises caused by motion artifacts and illumination variations existed, the
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EEMD, taking advantages of decomposing the non-linear and non-stationary time series
into a finite number of IMFs, can derive the IMF candidates including HR source from
the other IMFs including noises, which can be indicated from the fact that the EEMD with
frequency analysis can achieve the second best performance. Besides, considering that the
HR source is quasi-periodical and has a relatively high autocorrelation while the artifact
is random and has a low high autocorrelation, the time-delay CCA can be used to iso-
late the HR source from the artifacts. As for POS-based methods, since it softened the
knowledge required by CHROM for defining the projection plane by using the data-driven
approach, it was reported to have the best overall performance in a large benchmark in
previous single-camera framework, typically in fitness situations. However, in our multi-
camera framework, POS performed not that well, which might result from that a fixed plane
orthogonal to the temporally normalized skin-tone direction (four cameras may have four
skin-tone directions) can not be defined.

Apart from the above mentioned methods, the popular ICA-based method was also uti-
lized to estimate HR. However, the performance was really bad. It is reasonable that the HR
source can be recovered from a set of observed mixtures without prior information by using
ICA under the assumption that the RGB means time series are actually a linear combination
of the pulse signal and other signals. However, the linear assumption is more appropri-
ate in stationary situation or subtle motion situation. Thereby, the ICA-based method is no
longer suitable for our proposed moving-around multi-camera framework. In this paper, we
excluded the results derived by ICA-based method.

The time delay points τ can affect the performance of HR estimation. We set this
parameter from 1 to 5. Results showed that with the increase of τ , the HR estimation perfor-
mance of the proposed EEMD-TDCCA decreased. Consequently, the τ was set as 1 in this
study.

6 Conclusions

In this paper, we have demonstrated the feasibility of the synchronized multi-camera
framework for seamless remote HR measurement by our proposed algorithm framework
EEMD-TDCCA. Meanwhile, the performance has been compared with other four state-of-
the-art methods, typically as EEMD, EEMD-CCA, CHROM and POS. To our knowledge,
by the target ROI selection strategy, the temporally concatenated spatial RGB means of all
the pixels within each target ROI, can be considered as being derived from a “same” camera.
Afterwards, the green channel derived from the target ROIs can be pre-denoised by being
decomposed into several IMFs by EEMD. Furthermore, taking consideration of the charac-
teristic of both HR source (quasi-periodical) and the artifacts (random), the HR source can
be determined as the first pair of CVs (having the largest correlation coefficient) derived
by time-delay CCA. Our multi-camera framework will be a promising tool for practical
non-contact video-based vital sign measurement applications.

There are some limitations that should be noted. In the experiments, the participants
were asked to stand on the turntable peacefully with no facial expressions or head motions
to avoid extra motion artifacts. In the future, more realistic moving around situations along
with vivid facial or head motions can be studied. In that case, the method in [5] can
be utilized to recognize our interesting event. Besides, only the HR parameter has cur-
rently been considered. In the future, other physiological parameters, typically heart rate
variability, arterial blood oxygen saturation, blood pressure and respiratory rate will be
studied.
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