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Abstract— Heart rate (HR) estimation and monitoring is of
great importance to determine a person’s physiological and
mental status. Recently, it has been demonstrated that HR
can be remotely retrieved from facial video-based photoplethys-
mographic signals captured using professional or consumer-
level cameras. Many efforts have been made to improve the
detection accuracy of this noncontact technique. This paper
presents a timely, systematic survey on such video-based remote
HR measurement approaches, with a focus on recent advance-
ments that overcome dominating technical challenges arising
from illumination variations and motion artifacts. Representative
methods up to date are comparatively summarized with respect
to their principles, pros, and cons under different conditions.
Future prospects of this promising technique are discussed and
potential research directions are described. We believe that such
a remote HR measurement technique, taking advantages of
unobtrusiveness while providing comfort and convenience, will
be beneficial for many healthcare applications.

Index Terms— Facial video, heart rate (HR), noncontact, region
of interest (ROI), remote photoplethysmography (rPPG).

I. INTRODUCTION

MONITORING physiological parameters, such as heart
rate (HR), respiratory rate (RR), HR variability (HRV),

blood pressure, and oxygen saturation is of great importance
to access individuals’ health status [1]–[6]. Since the heart is
one of the most important organs of the body, the estimation
and monitoring of HR are essential for the surveillance of
cardiovascular catastrophes and the treatment therapies of
chronic diseases [1], [7]. Various methods have been devel-
oped to estimate HR using contact or noncontact sensors, and a
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relevant review is in [8]. The aim of all the noncontact methods
is to provide a more comfortable and unobtrusive way to
monitor HR and avoid discomfort or skin allergy caused by the
conventional contact methods [9]–[11]. Therefore, the moni-
toring of cardiorespiratory activity by means of noncontact
sensing methods has recently spurred a remarkable number
of studies that have used different techniques, such as laser-
based technique [12], radar-based technique [13], capacitively
coupled sensors-based technique [14], and imaging photo-
plethysmography (iPPG) [11], [15]–[22] technique. IPPG is
also referred to as remote PPG (rPPG), due to the fact that
it can measure pulse-induced subtle color variations from a
distance of up to several meters using cameras with ambient
illuminations [23]–[25]. The rPPG measurement is based on
the similar principle to that of the traditional PPG, which
the pulsatile blood propagating in the cardiovascular system
changes the blood volume in the microvascular tissue bed
beneath the skin within each heartbeat and thereby a fluc-
tuation is periodically produced. The rPPG has been proven
to be superior not only because subjects have no need to
wear sensors, which may be suitable for cases where a con-
tinuous measure of HR is important (e.g., neonatal intensive
care unit (ICU) monitoring, long-term epilepsy monitoring,
burn or trauma patient monitoring, driver status assessment,
and affective state assessment) [26]–[30], but also because
the adopted cameras are low-cost, convenient, widespread and
have the ability to access multiple physiological parameters
simultaneously [18], [19], [31]–[33].

Consumer-level-camera-based rPPG was first proposed by
Verkruysse et al. [18]. They demonstrated that HR could be
measured from video recordings of the subject’s face under
ambient light using an ordinary consumer-level digital camera.
Later, Poh et al. [19] proposed a linear combination of RGB
channels to estimate the HR by employing blind source sepa-
ration (BSS) methods. As an alternative, Sun et al. [34] pro-
posed a framework of remote HR measurement during ambient
light situations by employing joint time-frequency analysis.
Since then, an increasing number of studies, based on realistic
optical models and advanced signal processing techniques,
have been conducted to remotely measure the PPG signals
from facial videos [11], [20], [35]–[37]. The progress has been
summarized in several relevant review articles from various
aspects. Sun and Thakor [8] described the PPG measurement
techniques from contact to noncontact and from point to
imaging. Al-Naji and Chahl [38] provided a broad range
of literature survey for remote cardiorespiratory monitoring,
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including Doppler effect, thermal imaging, and video camera
imaging. Sikdar et al. [39] did a methodological review for
contactless vision-guided pulse rate estimation updated to the
year 2014, at which time most studies were still performed in
a relatively stable environment. Hassan et al. [40] investigated
both rPPG and ballistocardiography (BCG) estimation based
on digital cameras, while the most recent study of rPPG in
the review was reported in the year 2015. Most recently,
the research focus has been shifted from demonstrating the fea-
sibility of HR measurement under well-controlled and lablike
conditions to more complex realistic conditions (e.g., includ-
ing dynamical illumination variations and motion artifacts)
[23], [41]. A large number of studies have been performed to
reduce or eliminate the impact of noise artifacts resulting from
the motions of the subject, facial expressions, skin tone, and
illumination variations [31], [32], [42]–[44]. However, to the
best of our knowledge, there has not been yet a thorough
review of the very recent rPPG development that tackles
the realistic issues of dynamical illumination variations and
motion artifacts.

To fill this gap, this paper provides a timely, systematical
review of the recent advances of rPPG. The main contributions
of this paper are threefold. First, we provide a comprehensive
review of all rPPG studies since it first appeared in 2008.
Second, we summarize, compare, and discuss the method-
ological advancements of rPPG in detail, with a focus on
solutions for illumination and motion-induced artifacts, from
the signal processing perspective. Third, we present several
specific prospects for future studies related to rPPG and its
promising potential applications, hoping to share some new
thoughts with the interested researchers.

The rest of this paper is organized as follows. In Section II,
we describe the background of rPPG, including the optical
model, the basic framework, and some recent research inter-
ests. The detailed progress on rPPG, with respect to the cases
of varying illuminations and motions, is summarized, com-
pared, and discussed in Sections III and IV. Future prospects
of rPPG are introduced in Section V. Finally, in Section VI,
conclusions are drawn.

II. BACKGROUND OF rPPG

A. Reflection Model of rPPG

When a light source illuminates an area of physical skin,
quasi-periodical pulse-induced subtle color variations can be
measured using a contact-free camera from a distance of up to
several meters [23], [45], [46]. Without illumination variations
and motion artifacts, color variations mainly refer to the blood
volume changes in the microvascular tissue bed beneath the
skin when the pulsatile blood propagates in the cardiovascular
system within each heart beat circle. However, illumination
variations could change both the intensity and the spectral
compositions, while motion artifacts can cause the changes of
the distance (angle) from (between) the light source to the skin
tissue and to the camera, also leading to the changes of illu-
mination intensity and spectral compositions. Consequently,
the skin area measured by the camera has a varying color due
to illumination-induced and motion-induced intensity/specular

Fig. 1. Reflection model of rPPG.

variations and pulse-induced subtle color changes. Assuming
that the spectral compositions of the illuminance are fixed,
illumination variations and motion artifacts can be reflected
in the rPPG model in an optical and physiological sense,
as illustrated in Fig. 1. As shown in [37], assuming that the
processing duration of the recorded RGB image sequence is
defined as T (s), and the number of the pixels included in
the interested skin area is K , the reflection of the kth skin
pixel in a recorded RGB image sequence can be defined as a
time-varying function in the RGB channels

Ck(t) = I (t) · (vs(t) + vd(t)) + vn(t), 1 ≤ k ≤ K (1)

where t represents the t th time and 1 ≤ t ≤ T . Ck(t)
denotes the RGB channels (in column) of the kth skin pixel;
I (t) denotes the illumination intensity level; vs(t) denotes the
specular reflection and vd(t) denotes the diffuse reflection.
I (t) is modulated by both vs(t) and vd(t). vn(t) denotes the
measurement noise of the camera sensor.

vs(t) is a mirrorlike light reflection from the skin surface
without pulsatile information and is time dependent since
motion changes the distance (angle) from (between) the light
source to the skin surface and the camera. Thereby, vs(t) can
be expressed as

vs(t) = us · (s0 + s(t)) (2)

where us denotes the unit color vector of the light spectrum;
s0 and s(t) denote the stationary part and the varying part of
the specular reflection, respectively. The varying part is mainly
caused by motions.

vd(t) is associated with the absorption and scattering of the
light in skin tissues. In addition, vd(t) is varied by the blood
volume changes and can be written as

vd(t) = ud · d0 + up · p(t) (3)

where ud denotes the unit color vector of the skin-tissue; d0
denotes the stationary diffuse reflection strength; up denotes
the relative pulsatile strength while p(t) denotes the pulse
signals.
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Fig. 2. Basic framework of rPPG measurement.

TABLE I

REPRESENTATIVE RPPG STUDIES UNDER WELL-CONTROLLED CONDITIONS

B. Basic Framework of rPPG

Based on relevant rPPG studies in the literature, the corre-
sponding basic framework can be summarized and described
in Fig. 2. Such a framework is suitable for most of the rPPG
estimation methods proposed for well-controlled conditions,
except for the method proposed by Wu et al [47]. First,
a camera is employed to capture the interested skin area of
the body with a light source or just ambient illuminance. The
skin region of interest (ROI) can be manually or automatically
detected and tracked. Second, spatial single or multiple color
channel mean(s) are calculated from the ROI [48], [49]. Third,
signal processing methods (e.g., low-pass filtering and BSS
methods) are applied to spatial mean(s) to derive the compo-
nent including pulse information. Finally, fast Fourier trans-
form (FFT) (or a peak detection algorithm) is usually applied
to the component to estimate the corresponding frequency Fs

[or the number of the peaks Ns during the processing duration
T (s)]. The HR [in the form of beat per minute (bpm)] will
be calculated as 60 × Fs (or Ns/T × 60).

Table I lists typical studies of rPPG-based HR measure-
ment using consumer-level cameras under well-controlled

conditions, meaning that the subjects are asked to keep sta-
tionary and the ambient illuminance is stable. Specifically,
Verkruysse et al. [18] proposed to manually select the forehead
ROI. Then, raw signals, calculated as the average of all
pixels in the forehead ROI, were bandpass filtered using a
fourth-order Butterworth filter. HR was then extracted from
the frequency content using FFT for each 10-s window. The
authors have found that different channels of the RGB camera
feature different relative strengths of PPG signals and the
green channel contains the strongest pulsatile signal. This
observation is consistent with the fact that hemoglobin light
absorption is most sensitive to oxygenation changes for green
light.

Later, Poh et al. [19] presented a simple and low-cost
method to measure physiological parameters, e.g., HR, RR,
and HRV, by using a basic webcam. The pulse signal was
extracted by applying an independent component analysis
(ICA)-based BSS method to three RGB color channels of
facial video recordings to derive three independent compo-
nents. In their work, the facial ROI was defined as a rectangle
bounding box, which was automatically identified by Viola–
Jones (VJ) face detector [50]. FFT was then applied to the
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strongest pulsatile component and the largest spectral peak in
the frequency band (0.75 to 4 Hz) was selected, corresponding
to the HR in the normal range of 42 to 240 bpm. High correla-
tions were achieved between the estimated measurements and
the reference (the ground truth data) for the above-mentioned
physiological parameters under well-controlled conditions.

Kwon et al. [51] reproduced Poh’s approach and developed
the FaceBEAT application on a smartphone. As an alternative,
Lewandowska et al. [45] proposed using principal component
analysis (PCA) to define three independent linear combina-
tions of the color channels and demonstrated that PCA could
be as effective as ICA. Later, Yu et al. [52] demonstrated the
feasibility of PCA in dynamical HR estimation. The pros and
cons of applying ICA and PCA, as well as other methods
(i.e., direct frequency analysis, autocorrelation, and cross cor-
relation) for the analysis of rPPG-based HR were compared
in [53]. In addition, Rumiński [48], from the same group
as Lewandowska, demonstrated the possibility of estimating
HR from rPPG signals in the YCrCb (YUV) space using
both ICA-based and PCA-based methods. The experimental
results showed that the best HR estimation performance can
be achieved by applying PCA to the V channel obtained from
a forehead ROI.

An alternative way to measure HR from videos is
skin or motion magnification framework. Typically,
Wu et al. [47] proposed a Eulerian video magnification
(EVM) framework to estimate HR by visualizing the flow
of the blood, which was originally difficult or impossible
to be seen with the naked eye. Since EVM has the ability
of revealing subtle-motion changes based on spatiotemporal
processing [47], the HR could be measured without
feature tracking or motion estimation. Other skin/motion
color magnification methods for measuring HR have
been studied [54], [55]. It was suggested that skin color
magnification algorithms followed by BSS-based signal
processing methods would yield a better performance [56].

Furthermore, Sun et al. [57] proposed to investigate the
feasibility of remote assessment of HR, RR, and HRV by
applying a time-frequency representation method to the video
recordings of the subjects’ palm regions. All videos were
recorded at a rate of 200 frames per second (fps) under
the resting conditions to minimize motion artifacts. The
authors demonstrated that 200-fps iPPG system could pro-
vide a closely comparable measurement of HR, RR, and
HRV to those acquired from contact PPG references. It was
also reported that the negative influence of a low initial
sample rate could be compensated by interpolation [57].
Thereby, the frame number of the digital camera from
15 to 30 fps can be enough for the noncontact HR measure-
ment [34], [35], [43].

C. Recent Interests in rPPG

The terminology of rPPG-based HR measurement has not
yet been unified. Referring to the review in [23] and keywords
in most popular articles, we chose rPPG, remote PPG, iPPG,
imaging, noncontact, contactless, contact free, camera-based,
video-based and HR to search related studies using web
of science. After excluding the conference papers, there are

Fig. 3. Number of rPPG journal papers published per year.

111 most relevant journal articles. Fig. 3 shows the number
of articles published per year. It can be seen that rPPG
techniques have drawn increasing attention from researchers.
Most of such papers presented methodological solutions for
suppressing the artifacts induced by illumination variations and
body movements. We, therefore, later mainly review the rPPG
studies from these two aspects, respectively.

III. ILLUMINATION-VARIATION-RESISTANT SOLUTIONS

In this section, rPPG studies, aiming at eliminating the
impact of illumination variations, will be reviewed. Relevant
representative works are listed in Table II.

A. Related Work

To suppress the influence of illumination variations, one
possible way is adopting infrared cameras. For instance,
Jeanne et al. [65] took advantages of infrared cameras to esti-
mate HR under highly dynamic light conditions. As for RGB
camera solutions, Xu et al. [66] proposed to extract rPPG
signals by the usage of the Lambert–Beer law. They tested
the feasibility of estimating HR under different illumination
levels and reported a satisfactory performance.

When capturing facial RGB videos of subjects under illu-
mination variation situations, both the periodic variation of
reflectance strength corresponding to pulsatile information and
the changing illumination are recorded in the raw RGB signals.
Chen et al. [67], [68] applied an illumination-tolerant method
based on ensemble empirical mode decomposition (EEMD)
to the green channel for separating real cardiac pulse signals
from the environmental illumination noise. The framework,
using EEMD followed by a multiple-linear regression model,
was later employed to evaluate HR for reducing the effects
of ambient light changes [58]. Lam and Kuno [59] assumed
that HR extraction from facial subregions could be treated as
a linear BSS problem. With the assistance of the skin appear-
ance model, which describes how illumination variations and
cardiac activity affect the appearance of the skin over time,
HR could be well estimated by randomly selecting pairs of
traces in the green channel and performing majority voting.

When illumination variations occur in certain cases, both
the face and the background regions contain similar vari-
ation patterns. Several HR measurement methods take the
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TABLE II

REPRESENTATIVE RPPG STUDIES AGAINST ILLUMINATION VARIATIONS

Fig. 4. Two schemes of HR estimation when tackling illumination variations using regular RGB cameras.

background region as a noise reference to rectify the inter-
ference of illumination variations. Li et al. [41] proposed an
illumination rectification method based on the normalized least
mean square (NLMS) adaptive filter, with the assumption
that both the facial ROI and the background were Lam-
bertian models and shared the same light sources. Therefore,
the background can be treated as an illumination variation
reference and could be filtered from the facial ROI to rec-
tify the interference of illumination variations when subjects
watched movies. Lee et al. [62] also assumed that the raw

green trace rPPG signals from the facial video contained
both pulsatile information and illumination variations when a
subject watches movies in front of a laptop in a darkroom.
They proposed subtracting illumination artifacts (using the
extracted brightness variation signals from the movie signals)
from the raw green trace rPPG signals by using the least
square curve fitting method. Experimental results showed that
the root mean square error (RMSE) of the estimated HR
decreased. Tarassenko et al. [63] proposed a novel method to
cancel out the aliased frequency components caused by the

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 19,2021 at 08:53:41 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: VIDEO-BASED HR MEASUREMENT: RECENT ADVANCES AND FUTURE PROSPECTS 3605

artificial light flicker using autoregressive (AR) modeling. The
poles, corresponding to the aliased components of the artificial
light flicker frequency spectrum derived by applying AR to
the background ROI, are also presented in the AR model of
the face ROI. Therefore, these poles could be canceled from
the face ROI to find the regular HR frequency. Experimental
results showed that AR modeling with pole cancellation was
even suitable for strong fluorescent lights. However, due to
the fact that the AR modeling is a spectral analysis method,
it might be challenged by periodical illumination variations.
Recently, based on the same assumption that both facial ROI
and background ROI contain similar illumination variation
patterns, Cheng et al. [32] proposed an illumination-robust
framework using joint BSS (JBSS). Specifically, the authors
denoised the facial rPPG signals by applying JBSS to both
the ROIs to extract the underlying common illumination
variation sources. Followed by EEMD, the target intrinsic
mode functions (IMFs), including cardiac wave signals, were
then utilized to estimate HR. The proposed method was
shown effective under a number of dynamically changing
illumination variation situations.1 Furthermore, Xu et al. [64]
proposed a novel framework based on partial least squares
(PLS) and multivariate EMD (MEMD) to effectively evaluate
HR from facial rPPG signals captured during illumination
changing conditions. The main function of the PLS is to extract
the underlying common illumination variation sources within
facial ROI and background ROI, while the MEMD has the
ability of extracting common modes across multiple signal
channels when considering the dependent information among
the RGB channels [64], [69].

B. Basic Framework and Summary

Apart from adopting illumination insensitive cameras, such
as infrared cameras, two main schemes tackling illumination
variations when employing RGB cameras can be concluded
according to above-mentioned studies and shown in Fig. 4.

The first scheme is based on signal processing methods to
separate illumination variation signals from the pulse signals.
A typical illumination-tolerant solution is the EEMD algo-
rithm, which has already been demonstrated effective during
denoising situations [70], [71]. Chen et al. [67] applied the
EEMD algorithm to the green channel for separating real
cardiac pulse signals from the environmental illumination
noise. The major steps are described in Scheme I in Fig. 4.
First, the facial ROI is detected and tracked. Second, the spatial
means of the RGB channels or only the spatial mean of the
green channel is calculated from the derived facial ROI. Third,
the HR information is extracted by either using EEMD to
derive the target IMF representing cardiac signals or applying
BSS to randomly select good local regions containing car-
diac signals. Thereby, HR can be estimated from the target
IMF, or from multiple local regions combined with a majority
voting scheme. However, EEMD could be challenged by
periodical illumination variations, especially if the frequency

1Corresponding code can be downloaded from http://www.
escience.cn/people/chengjuanhfut/admin/p/Codes

of which is close to the normal HR frequency range (typically
from 0.75 to 4 Hz).

The second scheme is mainly based on the assumption that
the raw traces of rPPG signals (e.g., facial region) contain
both blood volume variations caused by the cardiac pulse and
temporal illumination variations. Such illumination variations
can be considered as a noise reference derived from nonskin
background (or the brightness of the video) regions to denoise
the rPPG signals derived from skin regions. The detailed pro-
cedures are shown in Scheme II in Fig. 4. First, both facial and
background ROIs are determined, including ROI detection and
tracking. Second, the spatial means of the color channels are,
respectively, calculated from both facial and background ROIs.
Third, the background ROI is treated as a noise reference to
extract the illumination variation source, by using AR, NLMS,
least square curve fitting, JBSS, or PLS. Fourth, the illumina-
tion variation source is later subtracted from the facial ROI to
reconstruct the illumination-variation-free facial ROI. Finally,
the HR is measured from the cleaner facial ROI. The studies
demonstrated that the approach based on selecting random
patches [59] is better than ICA-based method [19] and NLMS-
based method [41]. The JBSS-EEMD method performs better
than ICA-based [19], NLMS-based [41], multi-order curve
fitting (MOCF)-based [62], and EEMD-based methods [67].
The performance of such type of rPPG methods depends on
the degree of the similarity when extracting the common-
underlying illumination variation source from both skin and
nonskin regions. Several novel similarity measures in kernel
space, proposed by Chen et al. [72], [73] can be used for
robust filtering and regression. It should be noted that when
the variation in the facial ROI is different from that in the
nonskin ROI, methods in Scheme II might be ineffective. For
instance, someone bursts into the room and stands behind the
subject when the subject is watching a movie. To address this
concern, an appropriate nonskin ROI needs to be alternatively
utilized as the noise reference, such as placing a whiteboard
near the subject [32], [41].

In addition, we would like to mention that almost all the
above-mentioned studies aiming at eliminating the influence of
illumination variations require the subject to keep still, which
means that motion artifacts are out of consideration in such
studies. However, in realistic applications, both illumination
variations and motion artifacts are inevitable, and perhaps
motion artifacts are more common. Thereby, these methods
originally designed to suppress illumination variations could
be challenged and need to be further improved by addressing
the motion artifact concern.

IV. MOTION-ROBUST SOLUTIONS

An increasing number of works have been done to suppress
the impact of motion artifacts [79]–[83]. As shown in Fig. 1,
the changes of the distance (angle) from (between) the face and
the camera caused by motions can be modeled as the optical
model [21], [37]. It was noted that the camera quantization
noise can be reduced by spatially averaging the RGB values
of all skin pixels within the facial ROI, in which case vn(t)
can be negligible [42]. According to (1), the averaged temporal
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TABLE III

REPRESENTATIVE RPPG STUDIES AGAINST MOTION ARTIFACTS

RGB signals, marked as C(t), can be written as

C(t)= I0 · (1+i(t)) · (us · (s0 + s(t)) + ud · d0 + up · p(t)).

(4)

Since all ac-modulation terms are much smaller than the
dc term, the product modulation terms (e.g., p(t) · i(t) and
s(t)·i(t)) can be ignored. Therefore, C(t) can be approximated
as

C(t) = I0 · uc ·c0 + I0 ·uc ·c0 ·i(t) + I0 ·us ·s(t) + I0 ·up · p(t)

(5)

where uc · c0 = us · s0 + ud · d0 and i(t) is the time-varying
part of the intensity strength.

It can be seen from (5) that C(t) is a linear combination
of three signals i(t), s(t), and p(t). Such three signals are
zero-mean signals. Depending on whether knowing the prior
information of components, motion-robust methods can be
mainly divided into two categories, called BSS-based and
model-based methods. BSS-based methods might be ideal
for demixing C(t) to sources for pulse extraction with-
out prior information, while model-based methods can use
knowledge of the color vectors of different components
to control the demixing. Some representative studies are
listed in Table III. Besides these two categories of methods,
the methods employed to determine and track ROIs can be
treated as motion compensated strategies. In addition, some

other motion-robust methods are also reviewed. Such four
categories of motion robust solutions are shown in Fig. 5.

A. BSS-Based Methods
1) Conventional BSS: BSS refers to the recovery of unob-

served signals or sources from a set of observed mixtures
without prior information with respect to the mixing process.
Generally, observations are the outputs of sensors and each
output is a combination of sources [84]. One typical method
of BSS is ICA, which has been proven feasible in many
fields [85]. Based on the assumption that R, G, and B channel
signals are actually a linear combination of the pulse signal
and other signals, Poh et al. [9] proposed a joint approximate
diagonalization of eigen-matrix (JADE)-based ICA algorithm
to remove the correlations and the higher order dependence
between RGB channels to extract the HR component during
both sit-still and sit-move-naturally conditions. The RMSE
corresponding to motion situations was reduced from 19.36 to
4.63 bpm, demonstrating the feasibility of ICA for HR eval-
uation. Sun et al. [74] introduced a new artifact-reduction
methods consisting of planar motion compensation and BSS.
Their BSS mainly referred to the single channel ICA (SCICA).
The performance was evaluated through the facial video
captured from a single volunteer with repeated exercises,
which revealed that HR could be tracked with the proposed
method. Monkaresi et al. [86] proposed a machine learning
approach combined with the same ICA as Poh, to improve
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Fig. 5. Four categories of motion robust solutions for rPPG techniques.

the accuracy of HR estimation in naturalistic measurements.
Wei et al. [22] proposed to estimate HR by applying a second-
order BSS to the six-channel RGB signals that yielded from
dual facial ROIs. BSS-based methods had somewhat the ability
of tolerating motions but still showed limited improvement,
especially in dealing with severe movements [87]. Since the
orders of the extracted components via BSS are random,
usually FFT is utilized to determine the most probable HR
frequency. Thus, BSS-based methods cannot deal with cases in
which the frequency of the periodical motion artifacts falls into
the normal HR frequency range. Recently, Al-Naji et al. [46]
proposed the combination of complete EEMD with adaptive
noise (CEEMDAN) and canonical correlation analysis (CCA)
to estimate HR from video sequences captured by a hovering
unmanned aerial vehicle (UAV). The proposed CEEMDAN
followed by CCA method achieved a better performance than
that using ICA or PCA methods in the presence of noises
induced from illumination variations, subject’s motions, and
camera’s own movement.

2) Joint BSS: Conventional BSS techniques are originally
designed to handle one single data set at a time, e.g.,
decomposing the multiple color channel signals from the
single facial ROI region into constituent independent com-
ponents [32]. Recently, color channel signals from multiple
facial ROI subregions were employed for more accurate
HR measurement [22], [31]. With the increasing availabil-
ity of multisets, various joint BSS (JBSS) methods have
been proposed to simultaneously accommodate multisets.
Chen et al. [88] provided a thorough overview of representa-
tive JBSS methods. Several realistic neurophysiological appli-
cations from multiset and multimodal perspectives highlighted
the benefits of the JBSS methods as effective and promis-
ing tools for neurophysiological data analysis. The goal of
JBSS is to extract underlying sources within each data set
and meanwhile keep a consistent ordering of the extracted
sources across multiple data sets [85]. Guo et al. [27] first
introduced the JBSS method into rPPG fields, mainly applying
the independent vector analysis (IVA) to jointly analyze color
signals derived from multiple facial subregions. Preliminary
experimental results showed a more accurate measurement of
HR compared to ICA-based BSS method. Later, Qi et al. [75]

proposed a novel method for noncontact HR measurement
by exploring correlations among facial subregion data sets
via JBSS. The testing results on a large public database also
demonstrated that the proposed JBSS method outperformed
previous ICA-based methodologies.

The HR estimation by using JBSS methods is preliminary.
In the future, other types of multisets in addition to color
signals from facial subregions and even multimodal data sets
can be utilized for more accurate and robust noncontact HR
measurement via JBSS.

B. Model-Based Methods

Since the information of color vectors can be utilized by
model-based methods to control the demixing for compo-
nent derivation, the model-based methods have in common
that the dependence of C(t) on the averaged skin reflection
color channels can be eliminated [37]. The model-based
methods typically refer to methods based on the chromi-
nance model (CHROM), methods using blood volume pulse
signature (PBV) to distinguish pulse signals from motion
distortions [77], and methods based on a plane orthogonal to
the skin (POS) [37].

de Haan and Jeanne [21] developed a CHROM to consider
diffuse reflection components and specular reflection contribu-
tions, which together made the observed color varied depend-
ing on the distance (angle) from (between) the camera to the
skin and to the light sources. Therefore, the impact of such
motion artifacts could be eliminated by a linear combination
of the individual R, G, and B channels. Experimental results
demonstrated that CHROM outperformed previous ICA-based
and PCA-based methods in the presence of exercising motions.
Relying on the same CHROM method, Huang et al. [89]
applied an adaptive filter (taking the face position as the
reference) followed by discrete Fourier transform (DFT) to
rPPG signals. Experimental results showed the motion-robust
feasibility of the proposed method even under the situa-
tion that subjects performed periodical exercises on fitness
machines. Still relying on the CHROM method as a baseline,
Wang et al. [90] proposed a novel framework to suppress the
impact of motion artifacts by exploiting the spatial redundancy
of image sensors to distinguish the cardiac pulse signal from
the motion-induced noise.

Afterward, de Haan and van Leest [77] proposed a
PBV-based method for improving the motion robustness.
The PBV-based method utilized the signature of blood vol-
ume change to distinguish pulse-induced color changes from
motion artifacts in temporal RGB traces. Experimental results
during the conditions that subjects were exercising on five
different fitness-devices showed a significant improvement of
the proposed method compared to the CHROM-based method.

Recently, Wang et al. [37] proposed another model-based
rPPG algorithm, referred to POS. The POS method defined
a POS tone in the temporally normalized RGB space for
pulse extraction. A privately available database, involving
challenges regarding different skin tones, various illuminance,
and motions, was utilized for the benchmark of evaluating
HR methods including G (2007) [18], ICA (2011) [19], PCA
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(2011) [45], CHROM [21], PBV [77], 2SR [78], and POS [37].
POS obtained the overall best performance among them,
mainly due to the fact that the defined POS tone was phys-
iologically reasonable. It made POS especially advantageous
in fitness challenges where the skin-mask was noisy. They
also proved that POS and CHROM performed well during
both stationary and motion situations although both of them
may have problems in distinguishing the pulsatile component
from close amplitude-level distortions, whereas the PBV was
particularly designed for motion situations.

C. Motion Compensated Methods

The motion mentioned here is mainly referred to global rigid
and local nonrigid motions. Rigid motions usually include
head translation and rotation while nonrigid motions generally
refer to eye blinking, emotion expressing, and mouth talking.
In general, reliable ROI (i.e., facial ROI) detection and tracking
is one of the crucially important steps for rPPG-based HR
estimation, which can also be treated as a global motion
compensation way to guarantee the accuracy of HR estima-
tion [32], [41], [76]. Meanwhile, methods aiming to exclude
the regions that are easier to be locomotor can be regarded as
local motion compensation strategies [9], [41].

1) Global Motion Compensation: All the exposed skin areas
can be utilized as the ROI, such as face, forehead, cheese,
palm, finger, forearm, and wrist [57], [81], [91], [92]. In this
paper, the ROI mainly refers to the whole face or subregion(s)
of the face.

Preliminary rPPG studies tended to manually select
ROIs [18], [48], [74]. Later, some researchers employed the
popular VJ face detector to determine facial ROIs [19], [43].
Without any ROI detecting and tracking algorithms, even
minor movements of the observed regions were not permitted.
In a sense, all the studies focusing on refined ROI determi-
nation by employing face detection or/and tracking strategies
can be treated as the compensation of global motions.

In the beginning, a zoomed out version of the whole
rectangle box obtained by using VJ face detector was utilized
to determine the face ROI, avoiding nonfacial pixels [9], [43].
Later, benefiting from the development of image processing
techniques, more and more advanced face detection (mainly
referring to feature landmark localization) and tracking algo-
rithms have been introduced to rPPG field. For instance,
discriminative response map fitting (DRMF), proposed in [93],
was employed in [41] to automatically detect the 66 facial
landmarks on the face.2 In addition, Kanade–Lucas–Tomasi
(KLT) was then employed to track these feature landmarks
frame by frame. By this means, the global motions such as
shaking your head while keeping the frontal face were accept-
able. Tulyakov et al. [94] adopted the supervised descent
method to define the facial ROI by locating and tracking
facial landmarks. Cheng et al. [95] used the approximated
structured output learning approach in the constrained local
model technique to efficiently detect facial landmarks3 [32]

2The code can be downloaded in https://ibug.doc.ic.ac.uk/resources/drmf-
matlab-code-cvpr-2013/

3The detailed information and related code can refer to
http://kylezheng.org/facial-feature-mobile-device/

and KLT was still the tracker. Lam and Kuno [59] stated
that the pose-free facial landmark fitting tracker proposed by
Yu et al. [60] was very effective4 even suitable for large range
of motion situations.

Although all the above-mentioned face detection and track-
ing algorithms had the ability of tolerating global motions,
frontal faces in most cases must be guaranteed, which may
not meet the practical usage of rPPG applications. Recently,
an efficient facial landmark localization algorithm proposed
in [96] was employed to detect facial ROI even under dif-
ferent nonfrontal face viewpoint.5 In addition, since several
video-based rPPG frameworks have already been implemented
on mobile phones, the execution speed of the detection
and tracking algorithms should be acceptable. In this case,
the circulant structure of tracking-by-detection with kernels,
developed by Henriques et al. [97] could be considered owing
to the processing ability of hundreds of fps. We believe that
with more advanced facial landmark detection and tracking
algorithms employed for ROI detection in the wild, the per-
formance of rPPG-based HR estimation will be further pro-
moted. Other effective facial landmark detection and tracking
algorithms can be found in [98].

2) Local Motion Compensation: After the facial ROI detec-
tion, the spatial channel means of all the pixels within each
ROI are usually calculated and temporally concatenated to
compose rPPG signals. Such averaging will guarantee the
quality of rPPG signals unless the noise level is comparable.
However, the image-by-image variations in skin pixels from
a mouth region of a talking subject, or from a blinking eye
region might be more stronger than that from the stationary
forehead. Thus, with the consideration of eliminating the
influence of local motions, the detected rectangle box is seg-
mented to only keep the relatively stationary forehead or cheek
regions. In addition, several out of all the detected facial land-
marks will further be selected to exclude eye region, mouth
region, and other regions that are prone to be locomotor [31],
[99]. In addition, studies aiming to find the optimal facial ROI
could achieve a better HR estimation [100]–[103].

Besides the above-mentioned methods, other methods can
also compensate local motions. For instance, Wang et al. [90]
exploited the spatial redundancy of image sensors to dis-
tinguish the pulse signals from motion-induced noise. The
possibility of removing the motion artifacts was based on
the observation that a camera could simultaneously sample
multiple skin regions in parallel, and each of them could
be treated as an independent sensor for HR measurement.
Specifically, a pixel-track-complete (PTC) method extended
the face localization with spatial redundancy by creating
a pixel-based rPPG sensor and employing a spatiotemporal
optimization procedure. Experimental results, derived from
36 challenging benchmark videos consisting of subjects that
differed in gender, skin types, and motion types, demonstrated
that the proposed PTC method led to significant motion robust-
ness improvement and excellent computational efficiency.

4The corresponding code can be found in http://research.
cs.rutgers.edu/∼xiangyu/face_align.html

5The code can be downloaded in https://sites.google.com/site/chehrahome/
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D. Other Methods

Apart from the above-mentioned three types of motion-
robust methods, wavelet transform was another effective
strategy for motion-tolerant HR estimation. For instance,
Bousefsaf et al. [80] obtained PPG signals from facial video
recordings using a continuous wavelet transform and achieved
high degrees of correlation between physiological measure-
ments even in the presence of motion. The combination
of BSS and machine learning technique had an excellent
performance when selecting the best independent component
for HR estimation during both controlled lablike tasks and
naturalistic situations [86]. By considering a digital color cam-
era as a simple spectrometer, Feng et al. [76] built an optical
rPPG signal model to clearly describe the origins of rPPG
signals and motion artifacts. The influences of motion artifacts
were later eliminated by using an adaptive color difference
operation between the green and red channels. Immediately,
following the PBV-based method, Wang et al. [78] proposed
a conceptually novel data-driven rPPG algorithm, namely,
spatial-subspace rotation (2SR), to improve the motion robust-
ness. Numerical experiments demonstrated that given a well-
defined skin mask, the proposed 2SR method outperformed
ICA-based, CHROM-based, and PBV-based methods in chal-
lenges of different skin tones and body motions. In addition,
the proposed 2SR algorithm took advantages of simplicity
and easy extensibility. In addition, Fallet et al. [16] designed
a signal quality index (SQI) and demonstrated the feasibility
of SQI as a tool to improve the reliability of iPPG-based HR
monitoring applications.

E. Dealing With Both Illuminance and Motions

Till now, many researchers focused on simultaneously deal-
ing with both illumination variations and motion artifacts.
Li et al. [41] proposed a novel HR measurement method to
reduce the noise artifacts in the rPPG signals caused by both
illumination variations and rigid head motions. The problem of
rigid head motions was first solved by using DRMF and KLT
algorithms for face detection and tracking. The NLMS filter
was then employed to reduce the interference of illumination
variation by treating the green value of background as a refer-
ence. However, the signals corresponding to nonrigid motions
were segmented and sheared out of the analysis, which might
contain significant information related to physiological status.
To overcome the difficulty of contactless HR detection caused
by subjects motions and dark illuminance, Lin et al. [87]
proposed to detect subjects motion status based on complexion
tracking and filter the motion artifacts by motion index (MI).
The near-infrared (NIR) LEDs was also employed to measure
the HR in a dark environment.

The above two studies provided solutions to suppress the
impact of illumination variations and motion artifacts indepen-
dently. To deal with them simultaneously, Kumar et al. [31]
recently reported that a weighted average over skin-color
variation signals from different facial subregions (i.e., rejecting
bad facial subregions contributing large artifacts) helped to
improve the signal-to-noise ratio (SNR) of video-based HR
measurement in the presence of different skin tones, different

lighting conditions, and various motion scenarios. Profiting
from the mathematical optical model that treated both illu-
mination variations and motion artifacts as optical factors, all
the model-based methods can deal with the impacts of both
synchronously.

V. FUTURE PROSPECTS

Since video-based rPPG is a low-cost, comfortable, con-
venient, and widespread way to measure HR, it is of great
potential for circumstances where a continuous measure of
HR is important and physical contact with the subject is not
preferred or inconvenient, i.e., neonatal ICU monitoring [26],
[104], [105], long-term monitoring, burn or trauma patient
monitoring, driver status assessment [106], [107], and affec-
tive state assessment [108]. In order to accurately achieve
the remote HR measurement anytime and anywhere, future
prospects of rPPG include the following aspects.

A. Use Prior Knowledge

With the help of recently proposed mathematical mod-
els [37], the commonalities and differences between existing
rPPG methods in extracting HR can be better understood.
In general, each method might be more appropriate under
some assumptions for certain specific situations. The first
assumption of the mathematical model is that the light source
has a constant spectral composition but varying intensity,
which indicates that the changing of the spectral composition
of the light source will be an additional challenge. In this
case, if such spectral composition changing information is
prior known, a specialized method can be designed to better
estimate HR. In addition, the conventional BSS-based methods
help to demix the raw averaged RGB channels into indepen-
dent or principal components without any prior information,
while the generally utilize the information of color vectors
to control the demixing. Thereby, the performance of HR
measurement achieved by model-based methods is usually
better than that by conventional BSS-based methods. Further-
more, the data-driven based rPPG methods can achieve an
even better performance by creating a subject-dependent skin-
color space and tracking the hue change over time. Hereto,
including accurate knowledge or soft priors made both model-
based and data-driven-based rPPG methods more robust to
motion artifacts when compared to conventional BSS-based
methods. It is generally accepted that when developing a
robust rPPG engine for a broad range of applications, typical
properties of rPPG should be considered. This suggests that
certain known information can be utilized as a prior to improve
the optical model. Also, considering that BSS techniques
can incorporate prior information, such semi-BSS techniques
might be a promising attempt to eliminate the impact of
artifacts [109].

B. Establish Public Database Benchmark

In practice, another challenge in developing robust HR
measurement approaches is the lack of publicly available data
sets recorded under realistic situations. In other words, most
papers published in recovering HR from facial videos have
been assessed on privately owned databases. It is noteworthy
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that several public databases originally designed for emotion
recognition or analysis using both physiological and video
signals have been utilized as the benchmark to evaluate
the performance of existing rPPG methods [113]. The most
popular and challenging one is MAHNOB-HCI, which is a
multimodal database recorded in response to affective stimuli
with the goal of emotion recognition and implicit tagging
research [114]. In the MAHNOB-HCI data set, the face
videos, audio signals, eye gaze, and peripheral/central nervous
system physiological signals including HR are synchronized
recorded, which is obviously suitable for rPPG evaluation [40],
[41], [59], [113]. Several researchers have already evalu-
ated their own algorithms on this database. For instance,
Li et al. [41] tested their method by using face tracking and
NLMS adaptive filtering methods on the public database
MAHNOB-HCI, demonstrating the feasibility of countering
the impact of illumination and motion artifacts. In their
testing, each of 27 subjects has 20 frontal face videos, and
altogether 527 videos (excluding 13 lost-information cases)
were available. They chose 30 s (frame 306 to 2135, video
frame rate: 61 fps) from each video for the test. Lam et al.
chose the same videos as Li et al. (excluding those without
ECG ground truth) from MAHNOB-HCI to evaluate Li2014,
Poh2011, and their own proposed method (BSS combined with
selecting random patches), and reported that their proposed
method outperformed other two methods. Lam and Kuno [59]
recently published a reproducible study on remote HR mea-
surement by comparing CHROM, Li2014, and 2SR methods
on both publicly available MAHNOB-HCI and self-established
COHFACE. A thorough experimental evaluation of the three
selected approaches was conducted, demonstrating that only
CHROM yields a stable behavior during all experiments but
highly depends on the associated optimization parameters.
It should be noted that the maximum Pearsons correlation
coefficient was only 0.51 under all evaluation conditions, and
thus, it is clear that more advanced rPPG algorithms or target-
oriented rPPG algorithms are still needed [113].

Another useful database is DEAP, which is a public mul-
timodal database for the analysis of human affective states
in terms of levels in arousal, valence, like/dislike, domi-
nance, and familiarity. It provides electroencephalography and
other peripheral physiological signal recordings of 32 partic-
ipants under designated multimedia emotional stimuli [115].
DEAP database recently has been utilized by Qi et al. [75]
to evaluate the performance of their proposed JBSS-based
rPPG algorithm. Their results showed that JBSS outperformed
ICA-based methods.

However, both MAHNOB-HCI and DEAP involve illumina-
tion variations related to the movie itself and motions related
to the reaction of the induced emotions. They might not be the
best choice as the benchmark of evaluating rPPG algorithms
for more complex practical applications. Consequently, a new
publicly available database, directly related to rPPG-suitable
practical applications, is an urgent need.

C. Multimodel Fusion

Many studies have demonstrated that HR can be recovered
by using ordinary RGB cameras even during relatively dark

illumination situations, but it would be useless during totally
dark conditions. In order to monitor HR uninterruptedly,
a thermal/infrared camera, combined with RGB cameras and
possibly also other cameras insensitive to dark illuminance,
will be an appropriate approach for robust and continuous
noncontact HR measurement. The feasibility has been demon-
strated in [43], [83], and [117].

It has been pointed out that HR can also be estimated based
on motion-induced changes. These changes are caused by the
cyclical movement of blood from heart to head via the carotid
arteries giving rise to periodic head motion at the cardiac
frequency. These cardiac-synchronous changes in the ambient
light can also be remotely detected from the facial videos and
it is called remote BCG (rBCG) [23], [61]. By this means,
the only rBCG or the combination of rPPG and rBCG will be
another prospect [117], [118].

D. Multipeople, Multiview, and Multicamera Monitoring

In realistic applications, when a camera is installed in a
room, more than one person can be captured by the camera.
Besides, apart from the frontal face, other views of the
face (even the disappearance of the face) will appear, which
bring challenges to existing rPPG methods. Poh et al. [9] have
already demonstrated that their proposed method of remotely
measuring HR can be easily scalable for simultaneous assess-
ment of multiple people in front of the camera. Al-Naji and
Chahl [119] proposed to simultaneously estimate HR from
multiple people using noise artifact removal techniques. It is
encouraging that remote HR measurement for multipeople is
feasible and can be further promoted with the development
of multiface detection and tracking techniques [120]. As for
the multiview problem, most of the dominant face alignment
algorithms employed in the rPPG field can only handle the
frontal face within a sight deviation. Although the algorithm
developed by Asthana et al. [93] and recently employed by
Qi et al. [75] can provide a more unconstrained strategy for
HR estimation, it is not good enough yet. More advanced face
alignment algorithms aiming to provide a free face-view of
the subject should be developed and introduced [121], [122].
Furthermore, in order to realize a space-seamless rPPG-based
HR measurement, a single camera may no longer meet the
need since the face of the subject may be turned away
from the camera or be obscured by other objects, resulting
in missing observations [99], [123]. A preliminary research
fusing partial color-channel signals from an array of cameras
has been conducted to enable physiology measurements from
moving subjects [124]. In the future, other fusion mecha-
nisms or advanced signal processing methods with respect to
the optimal ROI selection or HR component extraction can be
developed when using multiple cameras.

E. Multiple Parameters Evaluated in Multiple Applications

This review paper mainly concentrates on HR measurement
by using rPPG technique. Apart from HR, several other
physiological parameters related to health status can also be
measured by rPPG. For instance, HRV and RR [125]–[129],
blood oxygen saturation [5], [130], blood perfusion, pulse
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Fig. 6. Potential applications of rPPG techniques.6

transit time/pulse wave velocity [131], blood pressure [4],
as well as systolic and diastolic peaks can also be measured
by using rPPG [132]. The detailed information can be found
in [8]. However, the related methods have not been evaluated
during rigorous situations. Thereby, the robust measurement of
these parameters under more challenging conditions is another
important direction.

Since rPPG overcomes the disadvantages related to fragile
skin injury or infection when using contact HR sensors, such
noncontact HR monitoring technique has been demonstrated
feasible and appealing to many potential applications, as illus-
trated in Fig. 6. For instance, it can provide a comfortable
way for monitoring of infants, elderly and chronic-patients
at home, in ICU or remote healthcare situations [26], [43].
Since telling a lie involves the activation of the autonomic
nervous system (ANS), which leads to the changes of mental
stress or physiological parameters, the rPPG can be extended
as a polygraph while someone is questioned. In addition, emo-
tional states are also important to indicate the healthy status
of individuals. In particular, fatigue and negative emotions
(such as irritation that may make drivers more aggressive and
less attentive) of the driver are risk factors for driving safety.

6Figures in application 1 to 8 are sequentially from [110], [World Book
Science and Invention, Encyclopedia American Polygraph Association, fed-
eral polygraphers] [106], [111], https://www.amazon.cn/dp/B06XWTYMZV,
http://www.softwaretestingnews.co.uk [43], and https://www.telecare24.co.uk
[112].

Consequently, monitoring the fatigue, the engagement and the
emotional states of individuals by rPPG is a great potential
prospect [133]–[135]. In addition, rPPG-based noncontact
physiological parameter measurement will provide an efficient
way, or/and combined with facial expressions, to remotely
aware emotions [136]. As for fitness applications, it is impor-
tant to retrieve the health status of the exerciser and an
optimized training program can be customized according to the
changing physiological parameters. The rPPG, instead of the
conventional contact handhold or thoracic-band HR electrodes,
will be more attractive. As for time-seamless HR monitoring,
the combination of visible RGB cameras and infrared cameras
will be promising. The rPPG based on infrared cameras will
be particularly appropriate for sleep monitoring during the
night.

Furthermore, a recent study, which demonstrated that HR
and RR can be well derived from video sequences captured
by a hovering UAV by using a combination of CEEMDAN
and CCA, suggests potential applications of detecting security
threats or deepening the context of human–machine interac-
tions. More recently, researchers have proposed to classify
living skin by using the rPPG technique based on the idea of
transforming the time-variant rPPG-signals into signal shape
descriptors (called multiresolution iterative spectrum) [137],
[138]. This breakthrough in the rPPG technique can be
employed as a biometric authentication tool, i.e., to prevent the
adversary that may pretend to be a trusted device by generating
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a similar ID without physical contact and thus bypassing one
of the core security conditions [139].

Apart from the above-mentioned prospects of rPPG, there
exists one crucial problem that has not yet been addressed
much. Currently, most of the existing rPPG methods are effec-
tive based on uncompressed video data. However, the uncom-
pressed videos will occupy a large amount of storage space,
which causes difficulty to the sharing of the data online.
In addition, since the required data transfer rate of the uncom-
pressed video data largely exceeds the transmission capability
of current telecommunication technology, it is hardly possible
to apply rPPG methods to the cases that need telecommu-
nication. [140]. Previous studies have demonstrated that the
performances of applying some rPPG methods to lossless
compressed videos are close to those corresponding to uncom-
pressed ones but with much less storage space (about 45%
with FFV1 codec) [146]–[148]. In the future, developing more
robust rPPG methods that suit for compressed video data is
also a prospect.

VI. CONCLUSION

rPPG has been attracting increasing attention in the liter-
ature. This paper provides a comprehensive review of this
promising technique, with a particular focus on recent contri-
butions to overcome challenges in the presence of illumination
variations and motion artifacts. A general scheme for measur-
ing HR under either condition was illustrated, and dominating
methods for each condition were summarized, compared, and
discussed to reveal their principles, pros, and cons. Among
all such methods, those employed for eliminating motion-
induced artifacts were then classified into four subcategories,
namely, BSS-based, model-based, motion compensated, and
others. Finally, certain future prospects of rPPG were pro-
posed, including: 1) the design of advanced methods with prior
information; 2) establishing a public database benchmark;
and 3) realizing a continuous, robust and space seamless
HR measurement using different strategies. We believe that
this paper can provide the researchers a more complete and
comprehensive understanding of rPPG, facilitate further devel-
opment of rPPG, and inspire numerous potential applications
in healthcare.
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[79] G. Cennini, J. Arguel, K. Akşit, and A. van Leest, “Heart rate
monitoring via remote photoplethysmography with motion artifacts
reduction,” Opt. Express, vol. 18, no. 5, pp. 4867–4875, 2010.

[80] F. Bousefsaf, C. Maaoui, and A. Pruski, “Continuous wavelet filtering
on webcam photoplethysmographic signals to remotely assess the
instantaneous heart rate,” Biomed. Signal Process. Control, vol. 8, no. 6,
pp. 568–574, 2013.

[81] A. V. Moço, S. Stuijk, and G. de Haan, “Motion robust PPG-imaging
through color channel mapping,” Biomed. Opt. Express, vol. 7, no. 5,
pp. 1737–1754, 2016.

[82] W. J. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan, “Amplitude-
selective filtering for remote-PPG,” Biomed. Opt. Express, vol. 8, no. 3,
pp. 1965–1980, 2017.

[83] M. V. Gastel, S. Stuijk, and G. D. Haan, “Motion robust remote-PPG
in infrared,” IEEE Trans. Biomed. Eng., vol. 62, no. 5, pp. 1425–1433,
May 2015.

[84] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines,
“A blind source separation technique using second-order statistics,”
IEEE Trans. Signal Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.

[85] X. Chen, Z. J. Wang, and M. McKeown, “Joint blind source sepa-
ration for neurophysiological data analysis: Multiset and multimodal
methods,” IEEE Signal Process. Mag., vol. 33, no. 3, pp. 86–107,
May 2016.

[86] H. Monkaresi, R. A. Calvo, and H. Yan, “A machine learning approach
to improve contactless heart rate monitoring using a webcam,” IEEE
J. Biomed. Health Informat., vol. 18, no. 4, pp. 1153–1160, Jul. 2014.

[87] Y. C. Lin, N. K. Chou, G. Y. Lin, M. H. Li, and Y. H. Lin, “A real-time
contactless pulse rate and motion status monitoring system based on
complexion tracking,” Sensors, vol. 17, no. 7, p. 1490, 2017.

[88] X. Chen, H. Peng, F. Yu, and K. Wang, “Independent vector analysis
applied to remove muscle artifacts in EEG data,” IEEE Trans. Instrum.
Meas., vol. 66, no. 7, pp. 1770–1779, Jul. 2017.

[89] R.-Y. Huang and L.-R. Dung, “A motion-robust contactless photo-
plethysmography using chrominance and adaptive filtering,” in Proc.
IEEE Biomed. Circuits Syst. Conf., Oct. 2015, pp. 1–4.

[90] W. Wang, S. Stuijk, and G. de Haan, “Exploiting spatial redundancy
of image sensor for motion robust rPPG,” IEEE Trans. Biomed. Eng.,
vol. 62, no. 2, pp. 415–425, Feb. 2015.

[91] A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contact-
less approach for assessment of venous occlusion plethysmography by
video recordings at the green illumination,” Sci. Rep., vol. 7, Mar. 2017,
Art. no. 464.

[92] A. V. Moço, S. Stuijk, and G. de Haan, “Skin inhomogeneity as a
source of error in remote PPG-imaging,” Biomed. Opt. Express, vol. 7,
no. 11, pp. 4718–4733, 2016.

[93] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust dis-
criminative response map fitting with constrained local models,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013,
pp. 3444–3451.

[94] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F. Cohn, and
N. Sebe, “Self-adaptive matrix completion for heart rate estimation
from face videos under realistic conditions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2396–2404.

[95] S. Zheng, P. Sturgess, and P. H. S. Torr, “Approximate structured output
learning for constrained local models with application to real-time
facial feature detection and tracking on low-power devices,” in Proc.
10th IEEE Int. Conf. Workshops Autom. Face Gesture Recognit. (FG),
Apr. 2013, pp. 1–8.

[96] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Incremental face
alignment in the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 1859–1866.

[97] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the
circulant structure of tracking-by-detection with kernels,” in Proc. Eur.
Conf. Comput. Vis. Berlin, Germany: Springer, 2012, pp. 702–715.

[98] D. Rathod, A. Vinay, S. S. Shylaja, and S. Natarajan, “Facial landmark
localization—A literature survey,” Int. J. Current Eng. Technol., vol. 4,
no. 3, pp. 1901–1907, 2014.

[99] O. Gupta, D. McDuff, and R. Raskar, “Real-time physiological mea-
surement and visualization using a synchronized multi-camera sys-
tem,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2016, pp. 46–53.

[100] S. Kwon, J. Kim, D. Lee, and K. Park, “ROI analysis for
remote photoplethysmography on facial video,” in Proc. 37th
Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBC), Aug. 2015,
pp. 4938–4941.

[101] R.-C. Peng, W.-R. Yan, N.-L. Zhang, W.-H. Lin, X.-L. Zhou, and
Y.-T. Zhang, “Investigation of five algorithms for selection of the opti-
mal region of interest in smartphone photoplethysmography,” J. Sen-
sors, vol. 2016, Nov. 2016, Art. no. 6830152.

[102] F. Bousefsaf, C. Maaoui, and A. Pruski, “Automatic selection of
webcam photoplethysmographic pixels based on lightness criteria,”
J. Med. Biol. Eng., vol. 37, no. 3, pp. 374–385, 2017.

[103] D. Wedekind et al., “Assessment of blind source separation techniques
for video-based cardiac pulse extraction,” J. Biomed. Opt., vol. 22,
no. 3, p. 035002, 2017.

[104] L. K. Mestha, S. Kyal, B. Xu, L. E. Lewis, and V. Kumar, “Towards
continuous monitoring of pulse rate in neonatal intensive care unit with
a webcam,” in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Aug. 2014, pp. 3817–3820.

[105] M. Villarroel et al., “Continuous non-contact vital sign monitoring in
neonatal intensive care unit,” Healthcare Technol. Lett., vol. 1, no. 3,
pp. 87–91, Sep. 2014.

[106] H. Qi, Z. J. Wang, and C. Miao, “Non-contact driver cardiac
physiological monitoring using video data,” in Proc. IEEE China
Summit Int. Conf. Signal Inf. Process. (ChinaSIP), Jul. 2015,
pp. 418–422.

[107] Q. Zhang, Q. Wu, Y. Zhou, X. Wu, Y. Ou, and H. Zhou,
“Webcam-based, non-contact, real-time measurement for the physio-
logical parameters of drivers,” Measurement, vol. 100, pp. 311–321,
Mar. 2017.

[108] F. Bousefsaf, C. Maaoui, and A. Pruski, “Remote detection of mental
workload changes using cardiac parameters assessed with a low-cost
webcam,” Comput. Biol. Med., vol. 53, pp. 154–163, Oct. 2014.

[109] M. S. Pedersen, U. Kjems, K. B. Rasmussen, and L. K. Hansen, “Semi-
blind source separation using head-related transfer functions [speech
signal separation],” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), vol. 5, May 2004, p. V–713.

[110] R. Kosti, J. M. Alvarez, A. Recasens, and A. Lapedriza, “Emotion
recognition in context,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1960–1968.

[111] W. Wang, B. Balmaekers, and G. de Haan, “Quality metric for camera-
based pulse rate monitoring in fitness exercise,” in Proc. IEEE Int. Conf.
Image Process. (ICIP), Sep. 2016, pp. 2430–2434.

[112] S. Liu, P. C. Yuen, S. Zhang, and G. Zhao, “3D mask face anti-spoofing
with remote photoplethysmography,” in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2016, pp. 85–100.

[113] G. Heusch, A. Anjos, and S. Marcel. (2017). “A reproducible study
on remote heart rate measurement.” [Online]. Available: https://arxiv.
org/abs/1709.00962

[114] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE Trans.
Affect. Comput., vol. 3, no. 1, pp. 42–55, Jan. 2012.

[115] S. Koelstra et al., “DEAP: A database for emotion analysis; Using
physiological signals,” IEEE Trans. Affective Comput., vol. 3, no. 1,
pp. 18–31, Oct./Mar. 2012.

[116] M. N. H. Mohd, M. Kashima, K. Sato, and M. Watanabe, “Facial
visual-infrared stereo vision fusion measurement as an alternative for
physiological measurement,” J. Biomed. Image Process., vol. 1, no. 1,
pp. 34–44, 2014.

[117] C. H. Antink, H. Gao, C. Brüser, and S. Leonhardt, “Beat-to-beat heart
rate estimation fusing multimodal video and sensor data,” Biomed. Opt.
Express, vol. 6, no. 8, pp. 2895–2907, 2015.

[118] D. Shao, F. Tsow, C. Liu, Y. Yang, and N. Tao, “Simultaneous
monitoring of ballistocardiogram and photoplethysmogram using a
camera,” IEEE Trans. Biomed. Eng., vol. 64, no. 5, pp. 1003–1010,
May 2017.

[119] A. Al-Naji and J. Chahl, “Simultaneous tracking of cardiorespiratory
signals for multiple persons using a machine vision system with noise
artifact removal,” IEEE J. Transl. Eng. Health Med., vol. 5, 2017,
Art. no. 1900510.

[120] R. Ranjan, V. M. Patel, and R. Chellappa, “HyperFace: A deep multi
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., to be published, doi: 10.1109/TPAMI.2017.2781233.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 19,2021 at 08:53:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2017.2781233


CHEN et al.: VIDEO-BASED HR MEASUREMENT: RECENT ADVANCES AND FUTURE PROSPECTS 3615

[121] S. S. Farfade, M. J. Saberian, and L.-J. Li, “Multi-view face detection
using deep convolutional neural networks,” in Proc. 5th ACM Int. Conf.
Multimedia Retr., 2015, pp. 643–650.

[122] Y. Wang, Y. Liu, L. Tao, and G. Xu, “Real-time multi-view face
detection and pose estimation in video stream,” in Proc. 18th Int. Conf.
Pattern Recognit. (ICPR), vol. 4, Aug. 2006, pp. 354–357.

[123] J. R. Estepp, E. B. Blackford, and C. M. Meier, “Recovering pulse
rate during motion artifact with a multi-imager array for non-contact
imaging photoplethysmography,” in Proc. IEEE Int. Conf. Syst., Man
(SMC), Oct. 2014, pp. 1462–1469.

[124] D. J. McDuff, E. B. Blackford, and J. R. Estepp, “Fusing partial camera
signals for noncontact pulse rate variability measurement,” IEEE Trans.
Biomed. Eng., vol. 65, no. 8, pp. 1725–1739, Aug. 2017.

[125] K. Alghoul, S. Alharthi, H. Al Osman, and A. El Saddik, “Heart rate
variability extraction from videos signals: ICA vs. EVM comparison,”
IEEE Access, vol. 5, pp. 4711–4719, 2017.

[126] M. van Gastel, S. Stuijk, and G. de Haan, “Robust respiration detection
from remote photoplethysmography,” Biomed. Opt. Express, vol. 7,
no. 12, pp. 4941–4957, 2016.

[127] J. Kranjec, S. Beguš, G. Geršak, and J. Drnovšek, “Non-contact heart
rate and heart rate variability measurements: A review,” Biomed. Signal
Process. Control, vol. 13, pp. 102–112, Sep. 2014.

[128] R.-Y. Huang and L.-R. Dung, “Measurement of heart rate variability
using off-the-shelf smart phones,” Biomed. Eng. Online, vol. 15, no. 1,
p. 11, 2016.

[129] K. Y. Lin, D. Y. Chen, and W. J. Tsai, “Image-based motion-tolerant
remote respiratory rate evaluation,” IEEE Sensors J., vol. 16, no. 9,
pp. 3263–3271, May 2016.

[130] A. R. Guazzi et al., “Non-contact measurement of oxygen satura-
tion with an RGB camera,” Biomed. Opt. Express, vol. 6, no. 9,
pp. 3320–3338, Sep. 2015.

[131] S. Dangdang, Y. Yuting, L. Chenbin, T. Francis, Y. Hui, and
T. Nongjian, “Noncontact monitoring breathing pattern, exhalation flow
rate and pulse transit time,” IEEE Trans. Biomed. Eng., vol. 61, no. 11,
pp. 2760–2767, Nov. 2014.

[132] D. McDuff, S. Gontarek, and R. W. Picard, “Remote detection of
photoplethysmographic systolic and diastolic peaks using a digital
camera,” IEEE Trans. Biomed. Eng., vol. 61, no. 12, pp. 2948–2954,
Dec. 2014.

[133] C. Maaoui, F. Bousefsaf, and A. Pruski, “Automatic human stress
detection based on webcam photoplethysmographic signals,” J. Mech.
Med. Biol., vol. 16, no. 4, p. 1650039, 2016.

[134] C. R. Madan, T. Harrison, and K. E. Mathewson, “Noncontact mea-
surement of emotional and physiological changes in heart rate from a
webcam,” Psychophysiology, vol. 55, no. 4, p. e13005, 2018.

[135] P. V. Rouast, M. T. P. Adam, D. J. Cornforth, E. Lux, and C. Weinhardt,
“Using contactless heart rate measurements for real-time assessment
of affective states,” in Information Systems and Neuroscience. Cham,
Switzerland: Springer, 2017, pp. 157–163.

[136] H. Monkaresi, N. Bosch, R. A. Calvo, and S. K. D’Mello, “Automated
detection of engagement using video-based estimation of facial expres-
sions and heart rate,” IEEE Trans. Affective Comput., vol. 8, no. 1,
pp. 15–28, Jan./Mar. 2017.

[137] W. Wang, S. Stuijk, and G. de Haan, “Unsupervised subject detec-
tion via remote PPG,” IEEE Trans. Biomed. Eng., vol. 62, no. 11,
pp. 2629–2637, Nov. 2015.

[138] W. Wang, S. Stuijk, and G. de Haan, “Living-skin classification
via remote-PPG,” IEEE Trans. Biomed. Eng., vol. 64, no. 12,
pp. 2781–2792, Dec. 2017.

[139] R. M. Seepers, W. Wang, G. de Haan, I. Sourdis, and C. Strydis,
“Attacks on heartbeat-based security using remote photoplethysmog-
raphy,” IEEE J. Biomed. Health Informat., vol. 22, no. 3, pp. 714–721,
May 2018.

[140] C. Zhao, C.-L. Lin, W. Chen, and Z. Li, “A novel framework for remote
photoplethysmography pulse extraction on compressed videos,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2018,
pp. 1299–1308.

[141] D. J. McDuff, E. B. Blackford, and J. R. Estepp, “The impact of
video compression on remote cardiac pulse measurement using imaging
photoplethysmography,” in Proc. 12th IEEE Int. Conf. Autom. Face
Gesture Recognit. (FG), Jun. 2017, pp. 63–70.

[142] L. Cerina, L. Iozzia, and L. Mainardi, “Influence of acquisition
frame-rate and video compression techniques on pulse-rate variability
estimation from vPPG signal,” Biomed. Eng./Biomedizinische Technik,
to be published, doi: 10.1515/bmt-2016-0234.

[143] E. B. Blackford and J. R. Estepp, “Effects of frame rate and image
resolution on pulse rate measured using multiple camera imaging
photoplethysmography,” Proc. SPIE, vol. 9417, p. 94172D, Mar. 2015.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on March 19,2021 at 08:53:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1515/bmt-2016-0234


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


