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A B S T R A C T

Remote photoplethysmography (rPPG), a non-contact technique to estimate heart rates (HR) from video
recordings, has attracted much attention from researchers in recent years. It is well-known that rPPG signals
can be extracted from low-resolution videos. However, the measurement quality may degrade due to camera
quantization noise if only a small number of pixels are within the skin region of interest. The purpose of this
paper is to comprehensively investigate the benefit of using a super-high resolution for the rPPG-based HR
estimation under various shooting distances. A new semi-blind source separation (semi-BSS) rPPG method,
which is proposed to combine the advantages of BSS and model-based methods, is fully tested on both the
public UBFC-RPPG and self-collected video datasets. The experimental results demonstrate that the new semi-
BSS method outperforms several existing techniques. A consistent and remarkable improvement on the rPPG
signal quality has been observed with the super-high resolution when the shooting distance is no less than
1.0 m. This indicates that selecting an appropriate resolution based on a given shooting distance also plays a
crucial role to improve the quality of rPPG measurements.

1. Introduction

Heart rate (HR) is one of the most important physiological parame-
ters to evaluate an individual’s health and affective state. The HR can be
measured in both contacting and non-contacting ways [1]. Compared
to traditional electrocardiography [2] and photoplethysmography [3]
measurements, which need specific sensors to touch with the skin
of a subject, remote photoplethysmography (rPPG) is a contactless
HR measurement method detecting blood volume variations in the
microvascular bed of tissue from facial videos. RPPG monitors the
heart rate in a simple, convenient, and non-invasive way. It has many
potential applications such as remote patient monitoring [4], vivo
detection [5], and driver fatigue assessment [6] etc.

However, many challenges may hinder the applications of rPPG.
The accuracy of this physiological measurement can be disrupted by
many factors such as poor signal strength, motion artifacts [7] and
illumination variations [8]. The rPPG pulsation is very weak which is
not visible to naked eyes and therefore is easily disturbed by noise.
The motion can cause an angle change between the camera and skin
region of interest (ROI), which further leads to motion-induced changes
of light source intensity. The illumination variation may change the
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source light spectrum or intensity in the ROI. The latter two factors
have been studied intensively in existing rPPG literature. Relevant
reviews can be found in [9].

On the other hand, camera parameters such as the video com-
pression and video resolution also have a salient interference on the
rPPG measurement accuracy. McDuff et al. [10] studied the impact of
video compression and indicated the compression degraded the quality
of non-contacting pulse signal remarkably. Zhao et al. [11] reviewed
papers considering the impact of video compression and introduced a
novel rPPG signal preserving video compression algorithm to overcome
this difficulty.

Besides the impact of video compression, the influence of video
resolution is also complex. Most existing rPPG studies have been con-
ducted with relatively low video resolutions because high-resolution
videos require more storage space, transmission bandwidth and com-
putational burden. However, if the video resolution is too low, the
rPPG pulse can be easily interfered by the quantization noise of image
sensors, which is difficult to be eliminated through a spatial averaging
in video frames. Even if the resolution is high, pixels within a ROI
may still not be adequate at a far shooting distance. Meanwhile, the
signal strength of a rPPG pulse also decreases along with distances due
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to a dropping amount of light received by the camera sensor [12].
Therefore, it is necessary to investigate the effect of video resolution, es-
pecially the rarely used super-high resolution, under the consideration
of varying shooting distances.

To evaluate the resolution effect, a new rPPG-based HR extraction
method was tested on a self-collected dataset covering various resolu-
tion and distance configurations. The proposed method applies a fast
kernel density independent component analysis (KDICA) [13] on the
chrominance signals defined from an optical reflection model [14].
As known, the CHROM method [14] extracts pulse explicitly from
chrominance signals which is considered to be robust against motion
artifacts. However, the alpha tuning in CHROM may fail if the strengths
of pulse and specular signals are at a similar level [15]. On the other
hand, the KDICA is a nonparametric blind source separation (BSS)
algorithm that does not require a prior assumption on distributions
of hidden sources. It has been proved in general to be more accurate
and robust than the classical parametric-based independent component
analysis (ICA) algorithms such as FastICA [16]. Our semi-BSS method
employs the KDICA instead of alpha tuning to extract pulse from
chrominance signals which combines the advantages of BSS and model-
based approaches. We verify the superiority of the proposed method
over several conventional methods on a public video dataset UBFC-
RPPG [17]. The proposed rPPG method was then tested thoroughly
on the self-collected dataset to demonstrate the effect of super-high
resolution for rPPG under different distances.

In summary, the contributions of this paper are twofold. First, we
evaluated the effect of video resolutions, especially the super-high 2.7K
one, to rPPG measurement quality considering various distances. The
results reveal the benefit of using high resolution for rPPG-based HR
extraction even for short shooting distances. This breaks the mispercep-
tion that high resolution is only necessary at long distances. Second, we
proposed a new semi-BSS rPPG algorithm which combined the benefits
of the model-based method and the blind source separation method.
The experimental results have verified the best performance of our new
method.

2. Related work

2.1. Typical rPPG methods

Many methods have been proposed to extract rPPG-based pulse
signals. We will list some typical methods below such as the blind
source separation (BSS) based methods, the skin optical reflection
model based methods and deep learning based rPPG methods. For more
details, please refer to some recent reviews like [9] and [18].

The BSS-based rPPG methods usually assume the target signal to
satisfy some statistical nature, such as independence or correlation. Poh
et al. [19] firstly employed the ICA to extract a pulse signal from raw
RGB traces. Lam [20] further used ICA on multiple random patches
and finally selected the optimal one through a histogram analysis. Wei
et al. [21] introduced a second-order BSS to estimate HR with RGB
signals from dual facial ROIs. Qi et al. [22] proposed to use a joint blind
source separation (JBSS) for rPPG measurement. The JBSS considers the
intrinsic correlations of HR among different facial regions. Recently,
Al-Naji et al. [23] measured the rPPG signal through a canonical
correlation analysis (CCA) combined with the ensemble empirical mode
decomposition (EEMD).

Different from the BSS-based methods, the model-based methods as-
sume the pulse signal to satisfy a skin optical reflection model [15]. De
Haan et al. [14] firstly proposed a chrominance-based signal processing
method (CHROM) to explicitly extract pulse signal against specular and
motion artifacts. The RGB channels were projected into a chrominance
subspace where the motion component was greatly eliminated. Later,
they introduced a PBV [24] method, which defined an optimal pro-
jection assuming the knowledge of the blood volume pulse signature.
Wang et al. [15] introduced a POS method to use a different projection

Table 1
Papers considering the influence of video resolution for rPPG.

Paper Distance (m) Resolution

Sun et al. [29] 0.35 (0.2) 640 × 512 (320 × 240)
Han et al. [30] 0.3∼1.8 m with

a 0.3 m step
640 × 480

Blackford et al. [31] 1.5 658 × 492 and 329 × 246
Blackford et al. [12] 25,50,100 1920 × 1080
Blackford et al. [32] 25,50,100,150 1920 × 1080
Ibrahim et al. [33] 1.0,3.0,5.0 1440 × 1080
McDuff et al. [34] 1.5 658 × 492,164 × 120

41 × 30, DRCNa

Our paper 0.5, 1.0, 1.5
2.0, 2.5, 3.0

2704 × 1520,1920 × 1080
1280 × 720, 640 × 480, 320 × 240

aDRCN indicates a deeply-recursive convolutional network model for image super
resolution.

orthogonal to the skin tone compared to CHROM. The POS method
was considered to be more robust in complex illumination scenarios.
The relation and differences of all those model-based methods were
discussed in paper [15].

Recently, inspired by the progress of deep learning methods in
computer vision, more and more deep learning based rPPG methods
have been proposed to estimate heart rate. In 2018, an end-to-end
system with a soft-attention mask was proposed by Chen et al. [25]
to establish a mapping between the contrast of video frames and the
corresponding pulse derivative. Later, Niu et al. [26] employed a con-
volutional neural network (CNN) to map the spatiotemporal features of
the cardiac information to its heart rate value. Qiu et al. [27] proposed
a different method to construct the spatiotemporal feature map. They
also used the Eulerian Video Magnification (EVM) [28] to enhance the
signal-to-noise ratio through magnifying facial color changes. Since all
these deep learning based methods are data-driven, a large amount of
training data are required to fit the network. The diversity and quality
of the training data may affect the performance significantly.

In summary, the deep learning based rPPG methods have great
potentials. But they are still in an early developing stage. Currently,
the well-known BSS- and model-based methods are still the mainstream
methods in rPPG research. ICA and CHROM are two representative
methods that are used very frequently. However, the commonly used
fastICA is a parametric BSS method which requires a prior assumption
on the distributions of hidden sources. It may not be realistic for prac-
tical rPPG applications. The CHROM method assumes a standardized
skin-tone vector. It explicitly extracts the pulse signal using an alpha
tuning. But the prior information used by alpha tuning may not match
with the actual situation, which can lead to a failure of this method.

Considering the above limitations, we will try to design a new ap-
proach that combines the advantages of BSS- and model-based methods
while overcoming their main drawbacks.

2.2. Studies considering video resolution

The influence of video resolution has already been considered in
some existing papers from different perspectives. However, to our best
knowledge, those works mainly take into account two situations: (1) A
fixed resolution with varying distances; (2) Multiple resolutions with a
fixed distance. The related literature are summarized in Table 1.

In 2012, Sun et al. [29] compared rPPG measurements using two
cameras with different resolutions. No apparent difference was ob-
served from a quite near distance around 0.2 ∼ 0.3 m. In 2015,
Han et al. [30] explored an optimal skin-camera distance using sev-
eral different cameras capturing videos at a 640x480 resolution. The
shooting distances varied from 0.3 m to 1.8 m with a 0.3 m step.
Blackford et al. [31] considered the influence of video resolution at
a fixed distance of 1.5 m. Two resolutions (658x492 and 329x246)
were explored and little difference was observed in results. Later in
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Fig. 1. Video-based non-contact physiological parameter extraction flowchart.

Fig. 2. Region of interest at different distances.

2016 and 2017, they further [12,32] investigated the rPPG-based HR
extraction at 25 m, 50 m, 100 m and 150 m ultra-long distances with a
1080p high resolution. The results showed that high resolution could
greatly reduce quantization noise when the distance was far. In 2018,
Ibrahim et al. [33] explored the influence of ROI selection on rPPG
solutions at different distances (1 m, 3 m, 5 m) with a fixed resolution
at 1440 × 1080. McDuff [34] also demonstrated the effectiveness of
image super-resolution to improve the signal-to-noise ratio of rPPG
measurement at a 1.5 m distance.

As discussed above, it is well known that rPPG can work with
relatively low resolutions [29,31] at near shooting distances. However,
high resolution is still necessary if the distance is too far or pixels
within ROI are inadequate [12,32,34]. It remains to be unknown about
the influence of resolution for the intermediate state. For this purpose,

this paper attempts to take a full investigation of the reciprocity re-
lation of resolution and distance on the rPPG accuracy considering
various configurations. Particularly, we will explore the benefit of
using a super-high resolution for rPPG measurement under several near
shooting distances.

3. Method

The framework of the proposed rPPG-based HR extraction method
is as shown in Fig. 1. Firstly, a video covering face region is recorded
using a color camera. Then the facial landmarks are detected and
tracked in each video frame. A ROI on the cheek area is determined by
corresponding facial landmarks. Pixels within the ROI are averaged in
each frame to get time series. The RGB sequences are further projected
to generate chrominance signals. The fast kernel density independent
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Fig. 3. Experimental setup.

Fig. 4. Region of interest for videos in UBFC-RPPG dataset: an example from subject
30.

analysis (KDICA) algorithm [13] is then used to extract the desired
pulse signal. Finally, the dominant frequency of the candidate signal is
calculated by a Fast Fourier Transform (FFT) based spectrum analysis
to obtain the HR value of the human body.

3.1. Region of interest

In this paper, we adopt a 68-point facial landmark detection algo-
rithm [35] based on a multi-task learning to determine the landmarks.
A standard facial tracker such as the Kanade–Lucas–Tomasi feature
tracker is employed to accelerate the landmark detections in video
frames. This ensures an accurate and fast facial landmark detection
which also helps to compensate for the interference of motion artifacts.
The ROI is defined as the left and right cheek regions with correspond-
ing landmarks. For different distances, the same regions are determined
as ROIs, as shown in Fig. 2. This is to make sure the evaluation of the
resolution effect is against a uniform baseline.

3.2. The proposed rPPG algorithm

Wang et al. [15] explain the ICA-based and the model-based rPPG
methods in a unified mathematical model which describes the skin
optical reflection mechanism. Under the roof of this model, the chromi-

nance signals 𝑆 =
(

𝑆1(𝑡)
𝑆2(𝑡)

)

in CHROM method can be written as

(

𝑆1(𝑡)
𝑆2(𝑡)

)

=
(

3𝑅𝑓 − 2𝐺𝑓
1.5𝑅𝑓 + 𝐺𝑓 − 1.5𝐵𝑓

)

= 𝐴 ⋅
(

𝑖(𝑡)
𝑝(𝑡)

)

(1)

where 𝐴 is a 2 × 2 mixing matrix, 𝑖(𝑡) indicates the light intensity
variation, 𝑝(𝑡) is the rPPG pulse signal, 𝑅𝑓 , 𝐺𝑓 and 𝐵𝑓 are the bandpass
filtered version of normalized 𝑅, 𝐺 and 𝐵 channels respectively.

An alpha tuning technique is used to further separate 𝑖(𝑡) and 𝑝(𝑡) as

�̂�(𝑡) = 𝑆1(𝑡) − 𝛼 ⋅ 𝑆2(𝑡) with 𝛼 =
𝜎(𝑆1)
𝜎(𝑆2)

. (2)

Here 𝜎(⋅) indicates the standard deviation of a given signal (⋅). It
is concluded that �̂�(𝑡) is proportional to 𝑝(𝑡) only when 𝑖(𝑡) or 𝑝(𝑡)
dominates. However, if 𝑖(𝑡) and 𝑝(𝑡) have a similar magnitude, �̂�(𝑡) is
suboptimal [15].

Due to the drawback of alpha tuning described above, here we
take a KDICA [13] algorithm to further separate the pulse signal
from chrominance signals. The proposed chrominance based KDICA
algorithm is abbreviated as CK, where the full algorithm is listed in Al-
gorithm 1. Different from the fastICA used in existing rPPG papers [19,
20,36], the CK method only separates two sources since chrominance
signals are supposed to remove the motion artifacts already. More
importantly, it does not need to assume the probability distribution of
unknown sources, which is more practical.

Algorithm 1 CK
1: Define chrominance signals 𝑆1(𝑡) and 𝑆2(𝑡) ;
2: Prewhiten: �̂�(𝑡) = �̂�1∕2

𝑆 𝑆(𝑡) for 𝑡 = 1, 2,… , 𝑛, where �̂�𝑆 is the sample
variance–covariance matrix of 𝑆(𝑡) ;

3: Optimize �̂� = argmax𝐹 (𝑂) to get a rotation matrix using the gradi-
ent algorithm, where 𝐹 (𝑂) is mutual information [13] defined with
kernel density estimator using Laplacian kernel function 𝐾(𝑥) =
1
2 𝑒

−|𝑥|;

4: Output the demixing matrix as : �̃� = �̂� ̂∑−1∕2
𝑆 .

The spectrum of each extracted source signal is calculated with FFT,
where the dominant frequency is determined as the HR candidate. We
select the target source with the highest power (normalized by a total
power) among all candidates.

4. Results and discussion

In this section, we will first take a full evaluation of the performance
of the proposed semi-blind source separation method. The effect of
resolution under various distances is then investigated by the proposed
method together with two other conventional methods.

4.1. Experimental setup

A. The UBFC-RPPG dataset
The public dataset UBFC-RPPG [17] is taken here to verify the

performance of the proposed method. The UBFC-RPPG is specifically
designed for the remote HR measurement task. It contains 42 videos
from 42 different subjects. The videos were recorded by a Logitech
C920HD Pro camera with a resolution of 640x480 in an uncompressed
8-bit RGB format. Each subject sits in front of a camera about 1 meter
away. The participant is required to play a time-sensitive mathemat-
ical game to keep their heart rate varied. The video records natural
movements of subjects, including rigid and non-rigid motions.

For each video, we process the first minute and set the process-
ing window as 10 s with a 5-seconds overlap between neighboring
windows.
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Fig. 5. The correlation and Bland–Altman plots of the CK method with a 2.7K resolution at three different distances: (a) 1.0 m; (b) 2.0 m; (c) 3.0 m, where SSE indicates the
sum of squared errors (SSE =

∑𝑛
𝑖=1(HRECG(𝑖) − HRrPPG(𝑖))2 with 𝑛 = 15).

B. The self-collected dataset
Considering there is a lack of public datasets for resolution–distance

evaluation, we collect the videos by ourselves. The experimental setup
is shown in Fig. 3. A high-resolution action camera GoPro HERO6
Black (GoPro Inc., San Mateo, California, U.S.) was employed to collect
video sequences. It was mounted on a mini tripod put on a table,
with a distance of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 m, respectively
away from the subject. Under each distance, videos were recorded with
a 2.7K (2704x1520) resolution at 30 frames per second. The videos
were recorded in an H.265 compression standard. And lower-resolution
videos including 240p (320x240), 480p (640x480), 720p (1280x720),
and 1080p (1920x1080) were directly downsampled from the same
2.7K video using a nearest neighbor interpolation method. It is to
ensure that the comparison is against the same baseline except for
the resolution. The illumination is natural sunlight from an indoor
environment, which is considered to be uniform. It ensures a minimum
illumination variation in recorded videos.

With the approval of the Ethics Review Committee of Hefei Uni-
versity of Technology, 15 voluntary Asian-skin-color subjects (two
females and thirteen males), with the ages ranging from 22 to 25 years
old (23.47 ± 1.55), participated in the experiment. During the video

recording, the subjects sit stationarily in front of the camera with their
faces visible. Meanwhile, the ECG acquisition system ECG6951D (Nihon
Kohden Co., Shinjuku-ku, Tokyo, Japan) was utilized to acquire the HR
ground truth, which was synchronized with the recorded videos. For
each subject, a total of six videos were captured with a 2.7K resolution
at six different distances. Then each video was downsampled to four
other lower resolutions. Consequently, a total of 450 synchronized
videos and ECG recordings (for 15 subjects) were collected to build a
database, with each video lasting at least 60 s. The processing window
is 10 seconds, with a 5-second overlap between neighboring windows.

4.2. Evaluation of the performance of the proposed method

To evaluate the performance of the proposed method, we also
compare it with some other rPPG algorithms. We employed the MAT-
LAB toolbox ‘iPhys’ [37] for the implementation of five typical non-
contact HR measurement methods including the GREEN [38], ICA [19],
CHROM [14], POS [15] and Ballistocardiography (BCG) [39]. It is
known that the input of BSS methods has a clear impact on the
quality of source extraction [40]. To demonstrate the superiority of
using chrominance signals instead of the conventional RGB traces in
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Fig. 6. The RMSE box plots of rPPG methods with different resolutions at a fixed distance.

Fig. 7. The RMSE box plots of rPPG methods at different distances with a fixed resolution.

BSS methods, we also test the KDICA with these two different types
of inputs. Similarly, to demonstrate the better performance of KDICA
compared to ICA in extracting heart rate signals, we also compared the
results of ICA with the same inputs. The ICA with chrominance inputs
is abbreviated as CI corresponding to the CK for KDICA.

All those methods were tested on the public UBFC-RPPG dataset. For
each algorithm, we choose the same region of interest as in Section 3.1,
as shown in Fig. 4. A bandpass filter with [0.7,3] Hz was performed
on all RGB channels defined in the ROI. The filtered RGB signal was
fed into each algorithm for further processing. The results are shown
in Table 2 below. Several quality metrics are compared including
the mean absolute error (MAE, MAE = 1

𝑛𝛴
𝑛
𝑖=1|𝐻𝑅(𝑖)

𝑝𝑑 −𝐻𝑅(𝑖)
𝑔𝑡 | ), the

standard deviation (SD), the root mean squared error (RMSE, where
RMSE = 1

𝑛𝛴
𝑛
𝑖=1(𝐻𝑅(𝑖)

𝑝𝑑−𝐻𝑅(𝑖)
𝑔𝑡 )

2), and the Pearson correlation coefficient

(r). Here 𝐻𝑅(𝑖)
𝑝𝑑 and 𝐻𝑅(𝑖)

𝑔𝑡 indicate the predicted heart rate value and
the ground truth of the 𝑖th sample, respectively. The best results are
highlighted in bold.

It is observed that the CK method outperforms all the other methods.
The results of GREEN and BCG methods overall are worse than the
other ones. This may be because both methods are susceptible to noise,
especially the motion noise. The model-based methods (CHROM and
POS) were slightly better than the BSS-based methods (ICA and KDICA).
But if we use chrominance signals as the inputs of BSS methods, the
results of the semi-BSS methods (CI and CK) are better than either
the pure BSS-based or model-based methods. It verifies that the use of
chrominance signals for the BSS algorithm can effectively improve the
accuracy of heart rate signal extraction.
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Fig. 8. The averaged RMSE curves of the CK method: (a) Varying distances with a fixed resolution; (b) Varying resolutions at a fixed distance.

Table 2
Performance of different rPPG methods with the UBFC-RPPG dataset.

Method SD (bpm) MAE (bpm) RMSE (bpm) 𝑟

GREEN [38] 11.090 4.469 11.598 0.842
BCG [39] 26.113 27.922 37.962 0.249
CHROM [14] 4.454 3.435 4.614 0.968
POS [15] 6.501 2.436 6.608 0.936
ICA [19] 8.258 3.507 8.635 0.908
KDICA 7.720 3.417 8.094 0.918
CI 3.723 2.519 4.074 0.979
CK 3.525 2.292 3.803 0.981

The improvement of the proposed semi-BSS method comes from two
aspects. Firstly, the chrominance signals in Eq. (1) eliminate most of
the motion noise through a weighted subtraction among different RGB
channels. It is equivalent to take a projection on the coefficient vector of
motion signals in the optical reflection model. Therefore, the generated
chrominance signals are considered to be motion-robust. Secondly, the
chrominance signals only have two channels. It eases the difficulty of
the BSS since one source is already explicitly removed compared to
the original three-channel RGB signals. Since KDICA is taken to further
extract the pulse signal, it overcomes the drawbacks of alpha tuning in
both CHROM and POS. The alpha tuning requires the sources to have
different magnitudes. This may be easily disrupted in practice.

The performance of KDICA is slightly better than that of ICA. This
has been verified with both the RGB inputs and the chrominance signal
inputs. It is considered that the KDICA does not require a prior assump-
tion on the distribution of hidden sources, which is more practical for
rPPG applications than the commonly used parametric-based FastICA
algorithm.

4.3. Evaluation of the influences of resolutions

We take a full experimental study on the self-collected dataset to
investigate the influences of resolution under different distances. To
eliminate the bias from a single method, we select three methods
including the CHROM, ICA, and CK for the evaluation. The experi-
mental results are as follows. First, the performance of rPPG solutions

with 2.7K, 1080p and 720p resolutions is shown in Table 3. It is
observed that the proposed CK method still gets overall the best perfor-
mance. Consistent in all the three methods, the measurement accuracy
decreases as distance increases for a given resolution.

The above results indicate that the rPPG measurement quality gets
an apparent degradation when the distances increase. This is further
verified in the correlation and Bland–Altman plots of the CK method
in Fig. 5, where the videos were captured with a super-high 2.7K
resolution at 1.0 m, 2.0 m, and 3.0 m, respectively. The HRrPPG here
indicates the averaged HR value of the predicted pulse while the HRECG
represents the averaged HR value of the corresponding ECG signal. We
can see that they match well with each other under all three distances.
However, the sum of squared errors (SSE) grows from 1.74 to 22.68
when distances increase, which indicates a signal quality degradation.
The reason behind it should be the remarkable camera quantization
noise effect at a considerable distance.

The box plots indicating RMSE of all solutions are illustrated in
Fig. 6. It shows that the RMSE increases while video resolution de-
creases for each fixed shooting distance. This is consistently observed
in all the three rPPG methods. It verifies the benefit of using a super-
high resolution even at a commonly used near shooting distance such
as 1.0 m.

Some other RMSE box plots are shown in Fig. 7, where the res-
olution is fixed while the distance changes. In detail, with a given
resolution at 240p, the median RMSE of the CK method varies from 2.4
to 12.8 bpm along with distances. However, for the super-high 2.7k
resolution, the RMSE only grows from 1.4 to 4.6 bpm. It shows that
super-high resolution is a better choice if the computational cost is not
a consideration.

Finally, the averaged RMSE of all CK solutions is summarized in
Fig. 8. It is observed in Fig. 8(a) that the curve for a super-high 2.7K
resolution is much flatter compared to other resolutions. Meanwhile,
there is not much difference among resolutions at a 0.5 m distance
in Fig. 8(b). However, the curves quickly become steep if distances
are longer than 1 m. It once again proves the benefit of using high
resolution in rPPG.
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Table 3
Performance of three rPPG methods with different distance–resolution configurations.

Distance (m) Resolution Method MAE (bpm) SD (bpm) RMSE (bpm) r

1.0 2.7K
ICA 1.316 1.410 1.627 0.991
CHROM 1.816 2.245 2.313 0.975
CK 1.260 1.234 1.503 0.993

2.0 2.7K
ICA 2.131 3.225 3.037 0.944
CHROM 2.892 3.702 3.729 0.931
CK 1.838 2.406 2.475 0.970

3.0 2.7K
ICA 5.197 5.530 1.627 0.809
CHROM 5.024 6.233 6.361 0.766
CK 3.420 4.634 4.595 0.863

1.0 1080p
ICA 1.557 2.162 2.123 0.978
CHROM 2.123 2.810 2.767 0.961
CK 1.564 1.808 1.922 0.984

2.0 1080p
ICA 2.501 4.038 3.649 0.917
CHROM 3.348 4.293 4.239 0.914
CK 2.603 3.373 3.273 0.940

3.0 1080p
ICA 4.517 6.654 6.480 0.704
CHROM 6.670 8.430 8.461 0.770
CK 4.259 5.630 5.616 0.805

1.0 720p
ICA 2.067 3.149 2.955 0.953
CHROM 2.983 3.950 3.689 0.921
CK 1.910 2.514 2.466 0.969

2.0 720p
ICA 3.214 5.123 5.046 0.876
CHROM 5.105 6.770 6.539 0.774
CK 3.569 4.729 4.659 0.897

3.0 720p
ICA 4.602 7.226 7.172 0.715
CHROM 9.112 11.544 11.197 0.488
CK 5.091 6.181 6.406 0.766

4.4. Discussion

The current study shows that the resolution has a remarkable influ-
ence on rPPG solutions, especially when the camera-subject distance
is over 1 meter. The use of a super-high resolution such as 2.7K can
improve the signal quality definitely. Therefore, although the rPPG
signal can be extracted from low-resolution videos, it is better to use
high resolution if computational and storage resources are affordable.
Alternatively, choosing an appropriate resolution needs always to be
considered with the shooting distance and the desired accuracy of the
rPPG pulse.

On the other hand, existing rPPG methods usually only take a pixel
averaging on video frames. Then the generated time series is denoised
in the temporal domain. This may not be adequate in rPPG signal ex-
traction. As proved in the works of McDuff [34] and Fukunishi [41], the
attempts of spatial signal enhancement or denoising also demonstrate
potentials to improve the quality of rPPG pulse signal. Therefore, it is
worth to taking further investigations on the spatial domain in addition
to existing temporal methods.

Finally, the proposed method is proved to get overall the best
performance compared to some other related methods. This inspires
further explorations to find new ways of combining BSS-based and
model-based methods. The merit lies in enforcing physical principles to
simplify or restrict the source extraction process. Consequently, it can
lead to some new approach which combines the advantage of existing
ones.

5. Conclusion

In this paper, we have investigated the influence of video resolutions
on the quality of rPPG solutions under various distances. A newly pro-
posed rPPG method has been tested comprehensively. The new method
is considered to combine the advantages of blind source separation
and model-based methods. A dataset has been prepared which includes
synchronized videos and ECG measurements with various resolution
and distance configurations. The experimental results verify the best
performance of the proposed method. It shows that a high resolution,

particularly the super-high 2.7K resolution used for the first time to
our best knowledge, improves the signal quality remarkably when the
shooting distance is no less than 1 meter. Consequently, a careful
selection of resolution is necessary to achieve a desired accuracy of
rPPG measurement under some given shooting distance. Furthermore,
this study also gives some inspirations on the spatial-based denoising
study for future rPPG research.
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