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Abstract—In this letter, a convolutional sparsity regularization
(CSR) is introduced into the framework of nonlinear iterative
methods for solving inverse scattering problems (ISPs). The
permittivity image of scatterers is sparsely represented in a
convolutional form with pre-learned dictionary filters. The CSR is
then incorporated with the subspace-based optimization method
(SOM), termed as (SOM-CSR), to reconstruct the target image
as a sparse coding by dictionary filters. The whole optimization
function of SOM-CSR is solved using an alternative iteration
method. Both synthetic and experimental data are employed to
validate the effectiveness of the proposed SOM-CSR method. The
results demonstrate that the CSR, as a structural constraint,
is beneficial to nonlinear iterative reconstruction methods for
solving ISP in contrast to pixel-based inversion.

Index Terms—Electromagnetic inverse scattering, convolu-
tional sparse coding, sparsity regularization.

I. INTRODUCTION

Electromagnetic inverse scattering problems (ISPs) aim to
reconstruct the geometry, position, and physical properties
of unknown scatterers from measured scattered fields. The
ISP reconstruction has been widely required in biomedical
imaging, non-destructive testing, and remote sensing, etc. Due
to the inherent ill-posedness and nonlinearity, it is challenging
to achieve a stable and efficient reconstruction of ISP.

The full-wave ISP is usually solved by nonlinear iterative
methods, such as the Levenberg-Marquardt method (LM) [1],
the distorted Born iterative method (DBIM) [2], [3], the con-
trast source inversion method (CSI) [4], [5], and the subspace
optimization method (SOM) [6], to overcome the ill-posedness
and nonlinearity issues. These methods typically linearize
nonlinear ISPs by simplifying the model with approximations
or taking alternating optimization to decouple parameters.
Meanwhile, regularization terms are implemented to stabilize
the reconstruction [7] for dealing with ill-posedness. The
regularization aims to add constraints to the searching space of
optimization. The prior information related to physical laws,
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geometrical knowledge, or some other reasonable assumptions
on unknown scatterers can all be incorporated to define the
regularization terms.

In recent years, sparse representation (SR) of unknown scat-
terers has become a popular kind of structural regularization to
solve ISPs in low-dimensional models. For example, Desmal
et al. [8]–[10] introduced a sparse constraint on pixels of
permittivity and induced current images with l1-norm, which
means the contrasts of target need to be nonzero only within
a small portion in the domain of interest (DOI). Besides
the pixel-wise SR, the unknowns of scatterers can also be
sparsely represented with mathematical basis functions [11]–
[13]. The basis-based SR can represent the scatterer in a much
more sparse manner in comparison to the pixel-wise one.
However, the performance of basis-based SR strongly depends
on the selected basis functions, which may lack adaptability
to different types of scatterers. The pixel-wise and basis-based
low-dimensional SR models can be solved in a popular way
under the framework of compressive sensing (CS) [14]–[16].
For more details about the applications of CS in ISP, the
readers can refer to review papers [17], [18].

In this letter, we introduce a convolutional sparsity reg-
ularization (CSR) into the framework of nonlinear iterative
methods for solving two-dimensional (2-D) ISPs. The SOM,
as a representative nonlinear ISP method, is used to demon-
strate the principle of the algorithm. The proposed method,
named SOM-CSR, first represents the unknown scatterers by
the convolutional sparse coding (CSC) [19] with pre-learned
dictionary filters. The convolutional sparsity representation is
then incorporated into the SOM as a sparsity constraint to
deal with the ill-posedness of ISP through restricting structural
information of targets. The cost functions are alternatively
optimized among the contrast, ambiguous induced current, and
the sparse coding coefficients. The effectiveness of the CSR
is evaluated with both synthetic and experimental data, where
the results demonstrate the benefit of this regularization to
enhance the reconstruction quality.

Compared with other sparsity regularization, the proposed
CSR has the following advantages.

1) It makes better use of the prior structural information
of scatterer images through the convolutional dictionary
learning. To the best knowledge of the authors, the
learned dictionary is used for the first time to solve
ISPs. This makes it easy to incorporate prior information
to restrict the solution space, thereby reducing the ill-
posedness of the problem.
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2) In CSC, the SR is obtained over the whole image, rather
than independently computing the representations for a
set of overlapping small patches in conventional SR [20].
This coding manner, which ensures the global correlation
of the scatterer image, can reconstruct the local structure
of unknown scatterers in a more robust way, so as to
improve the reconstruction quality of the ISP.

The structure of this letter is as follows. Section II intro-
duces the proposed method. Section III presents the numerical
examples and related results. Finally, we make conclusions in
Section IV.

II. METHOD

A. Forward problem

A 2-D ISP is considered with the transverse magnetic
polarization. The unknown non-magnetic scatterers are located
in the DOI D with a free-space background. There are
Nt transmitters and Nr receivers at a circle S surrounding
D, respectively. The forward scattering is governed by the
Lippmann-Schwinger equations [7]. Suppose the DOI D is
discretized into P small subunits. The total electric field Etot

in D satisfies the following formula

Etot = Einc +GD · ξ ·Etot, (1)

where Einc denotes the incident electric field, ξ is the con-
trast, and GD indicates the 2-D free-space Green’s function
mapping from the induced current I = ξ ·Etot to the scattered
field in D.

Meanwhile, the scattered field Esca in the domain of
measurement S can be expressed as

Esca = GS · ξ ·Etot, (2)

where GS is the 2-D free-space Green’s function mapping
from the induced current in D to the scattered field at S.

B. Convolutional sparsity regularization

The purpose of ISP is to retrieve the permittivity contrast
ξ from scattered field Esca. As is well known, ξ has relation
with the relative permittivity εr as ξ = −i(k/η0)(εr − 1),
where k and η0 are the wavenumber and the impedance in the
free space, respectively, and i =

√
−1.

The dictionary filters and the corresponding CSC of permit-
tivity images can be solved in a unified manner as

arg min
{dm},{xl,m}

1

2

L∑
l=1

‖
M∑
m=1

dm ∗ xl,m − εr,l‖22+

λ

L∑
l=1

M∑
m=1

‖xl,m‖1, such that ‖dm‖2 = 1, (3)

where {dm}Mm=1 are M convolutional dictionary filters with
size Nf ×Nf , εr,l is the lth permittivity image to be coded,
{xl,m}Mm=1 are the M unknown sparse coding maps of εr,l,
‖ · ‖2 indicates the l2 norm, ‖ · ‖1 denotes the l1 norm, *
represents convolution operation, and λ is the regularization
parameter. The unitary constraint on the l2 norm of filters aims
to avoid the scaling ambiguity of coding coefficients.

In Eq. (3), the unknown {dm}Mm=1 and {xl,m}Mm=1 can be
solved alternatively by the augmented Lagrangian methods
[21] with efficient solution of the main linear systems [22].
The above algorithms are implemented with the open-source
code ‘SPORCO’ [23].

In this paper, we first obtain {dm}Mm=1 with a set of given
permittivity images {εr,l}Ll=1. The filters {dm}Mm=1 are con-
sidered to learn prior structural information of target scatterers.
In the ISP, the unknown εr can then be represented by the CSC
with given {dm}Mm=1, which performs as the convolutional
sparsity regularization (CSR). The implementation details are
introduced next under the framework of SOM.

C. SOM-CSR
The SOM method takes the state equation as a physical

regularization, and it further decouples the induced current I
into the deterministic (Is) and the ambiguous (Ia) parts to
remedy the illposedness [6]. In the proposed SOM-CSR, the
CSC in Eq. (3) is easily incorporated into the framework of
SOM, as a structural regularization term. The full optimization
function of SOM-CSR is

arg min
ξ,{αj},{xm}

1

2

Nt∑
j=1

(
‖GS ·V·αj+GS · ISj − Esca

j ‖22
‖Esca

j ‖22
+
‖A·αj−Bj‖22
‖Isj‖

2
2

)

+ v

(
1

2
‖

M∑
m=1

dm ∗ xm − εr‖22 + λ

M∑
m=1

‖xm‖1

)
,

(4)

where A = V−ξ ·(GD ·V), Bj = ξ ·
(
Eincj +GD · Isj

)
−Isj ,

V denotes the noise space composing by the last few singular
vectors of GS , αj is the corresponding coefficient vector
of the ambiguous induced Iaj , and v is the regularization
parameter to balance the SOM and the CSR.

The parameters ξ, {αj} and {xm} of SOM-CSR are
updated alternatively as follows.
Step 1) Train filters {dm} using a pre-given training set.
Step 2) Initial step, n = 0: get ξ0 by backpropagation [7], set

αj,0 = 0, and initialize coefficient {xm,0}.
Step 3) n = n+ 1.

Step 3.1) Update {αj,n}: compute gradient gj,n = 5αj
f ;

from the derivative gj,n, the next Polak–Ribiere CG
search direction ρj,n = gj,n + (Re[(gj,n − gj,n−1)

∗ ·
gj,n]/‖gj,n−1‖22)ρj,n−1 can be calculated; the α is
updated with a step length dj,n as αj,n = αj,n−1 +
dj,nρj,n.

Step 3.2) Update {xm,n} by solving CSC in Eq. (3) with
fixed filters {dm} and ξn−1.

Step 3.3) Update ξn from Eq. (4) with fixed {xm,n} and
αj,n as

(ξn)l = (Pn)l/(Qn)l, (5)

where (·)l represents the lth element of the vector (·),

(Pn)l =

Nt∑
j=1

(
Etot

j,n

)∗

l
·
(
Idj,n

)
l∥∥∥Isj ∥∥∥2

2

−
ivη0

k
·
(

M∑
m=1

dm ∗ xm,n − 1

)
l

(Qn)l =

Nt∑
j=1

(
Etot

j,n

)∗

l
·
(
Idj,n

)
l∥∥∥Isj ∥∥∥2

2

+ v
η20
k2
.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Step 4) If the termination condition of maximal iterations
(100, as an empirical value by experiments) is satisfied,
stop the iteration. Otherwise, go back to step 3).

From Eq. (5), we clearly observe that when the regulariza-
tion parameter v approaches to zero, the SOM-CSR result is
infinitely close to that of SOM. In contrast, it performs like a
pure CSC when v becomes infinite.

III. NUMERICAL RESULTS

In this section, we demonstrate the benefit of CSR by
comparing the results of SOM-CSR with SOM using both
synthetic and experimental data. The root-mean-square error
(RMSE) and the structural similarity index measure (SSIM)
[24] are used to quantify the reconstruction quality of the two
methods.

A. Dictionary learning
In this letter, we take the commonly-used Modified National

Institute of Standards and Technology (MNIST) database [25]
as the training set to train the filter dictionary. The database
is composed of handwritten digits from 0 to 9. To increase
the diversity of images, we randomly rotate the digit image
with an angle from −170◦ to 170◦, and a random circle is
also added in D. We empirically pick 100 random samples
with a resolution of 64 × 64 from this database to train the
dictionary filters. According to Eq. (3), the convolutional filters
have unitary l2 norm and they mainly learn prior structural
information of unknown scatterers. The range of the relative
permittivity has little influence on the training of filters. Thus,
we train the filters with all training images with the relative
permittivity of scatterers between 1.0 and 1.5. As shown in
Fig. 1, the obtained filter dictionary {dm}32m=1 is empirically
composed of 32 filters, with each a size of 8 × 8. The same
learned filters will be used by the SOM-CSR method for all
the following examples. Meanwhile, the parameter λ for the
subsequent CSC in Eq. (3) is always set to 0.03.

Fig. 1. The dictionary of 32 filters trained with MNIST database.

B. Results of synthetic data
In synthetic examples, the square domain D of size 2.0

m×2.0 m is discretized into 100 × 100 grids for calculating
simulated scattered filed, while the grids of inversion are
set to 64 × 64. The operating frequency is 400 MHz, and
there are 16 transmitting antennas and 32 receiving antennas,
evenly distributed on a circle S with a radius of 3 m. The
regularization parameter v is set to 0.05 for all synthetic
examples. We will verify later that the SOM-CSR works well
with a relatively large range of v.

Fig. 2. Reconstruction results of synthetic data from MNIST database
(Test#1) by SOM and SOM-CSR, under 10% to 60% Gaussian white noise,
respectively.

1) Test with MNIST database: In the first case, we compare
the SOM-CSR and SOM with the testing data of another
20 profiles randomly selected from the MNIST database.
To evaluate the robustness against noise, we add 10% to
60% Gaussian white noise to the measured scattered field,
respectively. The average quality metrics of all comparison
results are summarized in Table I. It is found that, although
the quality metrics decrease with noise, the SOM-CSR consis-
tently outperforms the SOM. To demonstrate the comparison
visually, we show one of the results in Fig. 2, named Test#1,
where the GT indicates the profile of ground truth permittivity.
The quality metrics of the average results and Test#1 in Table
I indicate that the SOM-CSR clearly improves the SSIM,
especially for that with high noise levels, while the RMSE
is still on a similar level. The results in Test#1 also show that
the CSR makes the reconstruction more structural. Finally,
the average reconstruction time of a single testing sample
in SOM-CSR is 129.30 seconds compared to that of 44.11
seconds in SOM. It should be noted that the CSR can be
greatly accelerated by the GPU parallelization as introduced
in [26].

TABLE I
COMPARISON OF QUALITY METRICS FOR ALL RECONSTRUCTION RESULTS

AND TEST#1 IN MNIST DATABASE UNDER 10% TO 60% GAUSSIAN
WHITE NOISE, RESPECTIVELY.

Case Metric Method Noise
10% 20% 30% 40% 50% 60%

Average
SSIM SOM 0.8271 0.7991 0.7618 0.7541 0.7315 0.7116

SOM-CSR 0.8478 0.8278 0.8008 0.7973 0.7812 0.7713

RMSE SOM 0.1463 0.1460 0.1581 0.1669 0.1574 0.1557
SOM-CSR 0.1443 0.1437 0.1557 0.1633 0.1522 0.1482

Test#1
SSIM SOM 0.8227 0.8131 0.7903 0.7609 0.7417 0.6173

SOM-CSR 0.8499 0.8433 0.8368 0.8217 0.8023 0.7512

RMSE SOM 0.1393 0.1399 0.1423 0.1491 0.1580 0.2055
SOM-CSR 0.1382 0.1377 0.1423 0.1455 0.1529 0.1582

2) Test with complex profiles: To test the effectiveness of
CSR for reconstructing complex profiles, we further compare
the SOM-CSR and SOM methods in Test#2 to Test#4. Partic-
ularly, Test#2 is the well-known “Austria” [27] profile, where
the relative permittivity of scatterers is 2.2. Test#3 is composed
of two circles and two rectangles, where the centers of two
circles are at (-0.4, 0.6) m and (0.4, 0.6) m, respectively. The
radius of each circle is 0.3 m. The center of the rectangle
is at (0, -0.3) m, the inner rectangle is 1.0 m long and 0.6
m wide, and the outer one is 1.6 m long and 1.0 m wide.
The relative permittivity of the two circles is 2.3, the inner
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rectangle is 1.6, and the outer rectangle is 1.5. Test#4 consists
of two rings, where the radius of the inner circle in the ring is
0.5 m, the radius of the outer circle is 0.7 m, the centers of the
two rings are at (0.2, 0.2) m and (-0.2, -0.2) m, respectively,
and the relative permittivity is 2.2.

Fig. 3. Reconstruction results of synthetic data with complex profiles by
SOM and SOM-CSR, under 10% to 60% Gaussian white noise, respectively.
(a) Test#2 (b) Test#3 (c) Test#4.

The reconstruction results of Test#2 to Test#4 are shown
in Fig. 3, and the quality metric of SSIM is summarized
in Table II. From the results, we observe that the SOM-
CSR consistently outperforms the original SOM. The use of
CSR makes the reconstruction results of SOM-CSR more
robust against noise compared to SOM, which can be clearly
observed from the SSIM indices. The reason is that the CSC
of target scatterers with learned filters can well recover the
structural information. So, it can effectively suppress the inter-
ference of white noise compared to the pixel-based inversion.

TABLE II
COMPARISON OF SSIM QUALITY METRICS FOR RECONSTRUCTION

RESULTS OF TEST#2-TEST#4 UNDER 10% TO 60% GAUSSIAN WHITE
NOISE, RESPECTIVELY.

Case Metric Method Noise
10% 20% 30% 40% 50% 60%

Test#2 SSIM SOM 0.7063 0.6993 0.6709 0.6250 0.6060 0.5723
SOM-CSR 0.7302 0.7153 0.7012 0.6821 0.6378 0.6201

Test#3 SSIM SOM 0.6596 0.5489 0.5412 0.4941 0.4195 0.3871
SOM-CSR 0.7106 0.6698 0.6356 0.6076 0.5404 0.4988

Test#4 SSIM SOM 0.6889 0.6222 0.5349 0.4513 0.4709 0.4621
SOM-CSR 0.6951 0.6759 0.6251 0.5863 0.5362 0.5384

C. Test with experimental data

Finally, we verify the SOM-CSR with experimental data
provided by Institute Fresnel [28]. The “FoamDielExt” profile,
named Test#5, is tested by the two methods at the frequency
of 3 GHz and 5 GHz, respectively. The DOI D is of size 0.2
m× 0.2 m, which is discretized into 32× 32 grids. Since the
regularization parameter v is taken to balance the SOM and
CSR in SOM-CSR, we also take this example to explore the

effect of v on the overall reconstruction result. The SOM-CSR
is tested with different values of v and the SSIM metrics are
shown in Fig. 4. It is observed that the SSIM improves as v
increases, but the result becomes worse if v is too large. The
reason is that the effect of CSR is not significant when v is
too small. However, the SOM-CSR degenerates to CSC if v
is too large. Fortunately, the reconstruction can be effectively
improved when v is in a considerable large range.

Fig. 4. The SSIM of SOM-CSR reconstructions with different values of v
for Fresnel experimental data (Test#5) under 3 GHz and 5 GHz, respectively.

For a detailed comparison, in Fig. 5, we also demonstrate
the reconstruction results of SOM-CSR with v = 0.05 and
v = 0.2, respectively. Compared to SOM, there exists a
certain improvement on the reconstruction quality of SOM-
CSR, which indicates that the CSR is not only effective on
simulated data but also the experimental data.

Fig. 5. Reconstruction results of Fresnel experimental data (Test#5) by SOM
and SOM-CSR with v = 0.05 and v = 0.2, respectively. (a) SOM (b) SOM-
CSR (v = 0.05) (c) SOM-CSR (v = 0.20).

IV. CONCLUSION

In this letter, a convolutional sparsity regularization term is
proposed, which incorporates prior structural information into
nonlinear iterative ISP methods, based on the convolutional
sparse coding of scatterers with learned dictionary filters.
The CSR has been introduced to work with the subspace
optimization algorithm, named SOM-CSR, to enhance the
reconstruction quality. Results on synthetic and experimen-
tal data have both demonstrated the superior performance
of SOM-CSR against noise compared to the original SOM
algorithm. Although only verified with SOM, the CSR is
expected to also work with other nonlinear iterative methods
to improve the quality of ISP reconstructions.
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